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Abstract. We introduce an efficient search strategy to substantially
accelerate feature based registration. Previous feature based registration
algorithms often use truncated search strategies in order to achieve small
computation times. Our new accelerated search strategy is based on the
realization that the search for corresponding features can be dramat-
ically accelerated by utilizing Johnson-Lindenstrauss dimension reduc-
tion. Order of magnitude calculations for the search strategy we propose
here indicate that the algorithm proposed is more than a million times
faster than previously utilized naive search strategies, and this advan-
tage in speed is directly translated into an advantage in accuracy as the
fast speed enables more comparisons to be made in the same amount of
time. We describe the accelerated scheme together with a full complex-
ity analysis. The registration algorithm was applied to large transmission
electron microscopy (TEM) images of neural ultrastructure. Our experi-
ments demonstrate that our algorithm enables alignment of TEM images
with increased accuracy and efficiency compared to previous algorithms.

1 Introduction

Image registration is a fundamental process in medical imaging applications
aimed at establishing spatial correspondences between images [1]. Registration
algorithms must satisfy demanding requirements of speed, robustness and ac-
curacy depending on the specific application involved. Alignment of Electron
Microscopy (EM) images of neural tissue involves consideration of the high res-
olution and overwhelming size of the data, the large amount of detail, the ac-
quisition artifacts and the deformation induced by the intrinsic deformation of
the slices [2]. Thus, the reconstruction of neural circuitry from EM remains a
substantial and challenging problem [3].

Existing algorithms for registration can be broadly classified into approaches
that directly operate on image intensities or to feature based alignments seek-
ing to identify features that should be aligned and an optimal transformation
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that brings them into alignment [1]. Similar to previous registration methods
for alignment of microscopy images our method relies on matching local image
patches across successive slices. A recent study [2] addressed matching as part of
a complete algorithm for assembling 3D volumes from EM data. This approach
first identifies feature descriptors based on a gradient vector pyramid and then
exploits these features to match adjacent slices. An approach for 3D reconstruc-
tion based on a block matching strategy was presented by [4] where the local
displacements were utilized to robustly estimate a global transformation. [5] de-
veloped a solution for 3D reconstruction of a series of EM images based on the
finite support properties of the cubic B-splines, where the initial estimate for the
affine registration was based on the technique described in [4].

In this work we presents a novel algorithm designed for alignment of large
cross-sectional slices of EM by introducing a search strategy which to our knowl-
edge has not been used for image registration before. The key advance we pro-
pose is based on the realization that the search for corresponding features can
be dramatically accelerated by utilizing Johnson-Lindenstrauss (JL) [6] dimen-
sion reduction. This enables us to consider more regions in the images and to
consider all of the potential correspondences, ensuring that the search does not
overlook the correct set of correspondences, and thus dramatically improves the
robustness and accuracy of the registration. Combining this together with recent
advances in approximate nearest neighbor (ANN) techniques [7] for the search
strategy reduces the computational complexity significantly.

The paper is organized as follows. Section 2 describes the algorithm, section
3 presents experimental results and conclusions are presented in section 4.

2 Methods

The volume reconstruction is obtained by composing pairwise 2D alignments of
consecutive slices by taking as reference the middle of the stack. Thus we focus
on the 2D registration of successive sections, although the algorithm can be used
for 3D registration as well. The input includes the fixed scene image IS and a
moving model image IM . Our aim is to find the transformation T aligning the
scene with the model. The algorithm consists of three main steps. In the first
step, we extract image patches, also called blocks, fragments or templates [4],
as the features for matching. The patches are rectangular sub-images of d = 104

voxels (i.e. 100 × 100 sized image regions) extracted from the scene and model
images. Then using JL-embedding [6] with the random projections approach by
Achlioptas [8] we generate a low dimensional representation of these patches.
In the second step the patches of reduced dimension are compared across
successive slices. So that, given a projected scene and model patch we search for
correspondences based on the Euclidean distance between the patches. Finally,
we construct two sets of points based on the center coordinates of the projected
scene and model patches. We compute the transformation with an extension to
the Expectation Maximization Iterative Closest Point (EM-ICP) [9] algorithm
which includes the similarity measure of the patches. Table 1 presents an outline
of the algorithm proposed.
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Table 1. Outline of the algorithm

Given a pair of successive slices, a fixed (scene) and moving (model) image:
Step 1: JL dimension reduction of features: State of the art feature matching
approaches to registration commonly perform feature detection by correlation, followed
by a truncated search and a transform estimation. In contrast with previous methods
we first extract small patches at different locations for both images and then the
features are projected on to a lower dimension based on the JL-Lemma.
Step 2: Search for correspondences: The projected features extracted from both
images are compared based on the correlation measure or Euclidean distance.

-2a. Brute Force search strategy.
-2b. Approximate nearest neighbor (ANN) search where each near neighbor is reported

with a certain probability. For this step there are several solutions such as tree
based search or locality sensitive hashing [10].

Step 3: Transformation estimation: Apply extended EM-ICP [9] approach based
on the corresponding features between the images.

2.1 Step 1: Johnson-Lindenstrauss (JL) Dimension Reduction

The essential property enabling accelerated search has been the realization that
efficient high dimensional search can be achieved by creating randomized pro-
jections into low-dimensional spaces, and then using efficient low-dimensional
search. The JL Lemma [6] asserts that any set of n points in d-dimensional Eu-
clidean space can be projected down to k-dimensional Euclidean space, where
k = O(ε−2 log n), while maintaining pairwise distances with a low distortion.
Recent research [8] has shown that random projection matrices can be used for
JL projection. Following this proof, given the initial set of n points in Rd, repre-
sented as an n× d matrix, where each feature-patch is represented by a row, let
R be a d× k random matrix with R(i, j) = rij ; where the independent random
variables rij are : {1 with probability 0.5, and −1 with probability 0.5 }. Naively,
the random projection can be performed by constructing a k×d random matrix;
so that mapping each point takes O(dk), however recent theoretic work suggests
that a projection from dimension d to dimension k can be computed with O(d)
operations [11].

2.2 Step 2: Search for Correspondences

The transformation computation is based on maximizing the similarity of corre-
sponding patches. Currently we utilize the brute-force approach which involves
computing the distances between the patch and all the patches in the neighbor-
ing image. Our experiments compare the results of using the full-size patches and
their projections. We use normalized correlation (NC) as a similarity measure
since NC is invariant to linear intensity transformation and it is assumed that
for small corresponding image patches across the two successive slices, the in-
tensities are locally related by some linear intensity transformation [4]. Another
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attractive property of NC is that it is equivalent to a squared Euclidean distance
[12] which meets the requirements of the JL Lemma.

Recently it has been discovered that allowing approximate rather than exact
search enables dramatically accelerated search [7]. In the approximate nearest
neighbor (ANN) formulation, given a query point q and a specified constant
c > 0, the algorithm returns a point whose distance from q is at most a c = (1+ε)-
factor larger from the distance of the nearest point p in P from q. This approach
results in efficient algorithms which are based on data structures such as tree
based search (spill trees) and locality sensitive hashing (LSH)[10]. Thus instead of
performing the naive search described above, additional significant acceleration
can be obtained by casting the registration problem as an ANN search problem.

2.3 Step 3: Transform Estimation

Given the set of patches represented by their center coordinates this step de-
termines the transformation that matches a set of model and scene points. The
approach exploits the Expectation Maximization (EM) scheme to optimize si-
multaneously for correspondences and the registration transformation. It extends
the EM-ICP approach to go from point matching to patch matching. Let si be
the points of the scene set S ∈ R2 and mi the points of the model patch set
M ∈ R2, with ns and nm determining the number of points respectively. T rep-
resents the rigid transformation from the scene to the model. The probability
of a point si to correspond to the model points mi is modeled by a Gaussian
probability distribution. In the case of homogeneous isotropic Gaussian noise the
probability is modeled by

p(si|mj , T ) = exp(−||T ∗ si − mj||2/2σ2) (1)

where σ represents the noise in the measurement.
The idea is to maximize log p(S, A|M, T ) the log-likelihood of the data dis-

tribution where the unknown correspondences A ∈ RnS×nM are considered as a
hidden random variables . The algorithm starts by initialization of the transfor-
mation (T ), and repeats until convergence of the two EM steps. In the E-step,
T is fixed and the probability of matches (AT )ij are computed as follows (for
more details see [9])

(AT )ij =
πij exp(−||T ∗ si − mj ||2/2σ2)

∑
k πik exp(−||T ∗ si − mk||2/2σ2)

(2)

In the classic EM-ICP, the prior probability of the matches is based on the
uniform law: πij = 1

nM
. In contrast, the EM-ICP-NC used here extends the

prior to account for the NC similarity of the patches taking advantage of the
similarity measure in addition to the spatial information. Hence, the prior is
based on the normalized NC:

πij =
NC(pi, pj)∑

k

NC(pi, pk)
(3)
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The NC-based prior πij is also used in the initialization step to determine the
initial transformation T . In the M-step, A is fixed and the likelihood is optimized
w.r.t to T .

Tn+1 = argmax
T

(EA[log P (S, A|M, T )]) (4)

Thus, by ignoring constant terms the criterion optimized by the EM-ICP-NC
yields

CAT (T ) =
ns∑

i

nm∑

j

(AT )ij log p(si|mj , T ) (5)

2.4 Computational Complexity

The computational complexity of the entire process is determined by the num-
ber of images (T ≈ 100) in the data base, the image size n (we assume that the
number of patterns per slice is proportional to n) and the feature dimension d.
Our preliminary results were performed on slice sections of n = 108 = 104×104,
which were downsampled using Gaussian smoothing plus bi-linear interpolation
to a size of n = 106 = 103 × 103. Improved TEM techniques utilizing multiple
camera arrays have lead to datasets of n = 1010 = 105 × 105. The size of a
typical local image patch is d = 104 = (100 × 100), by employing JL lemma
the initial n × d matrix is projected to an n × k feature matrix (where k = 100
in our experiments). We focus on the search for correspondences since it is the
most expensive operation of the algorithm. The naive searching method involves
comparing each projected patch to all the projected patches in the neighboring
image. The complexity of the naive search time per query is O(dn). Thus, the
overall complexity for using the full d-dimensional patches is O(Tn2d). Hence,
projection to lower dimension alone reduces the complexity to O(Tn2 log n) sav-
ing O(d − k) operations (104 operations per slice in our experiments).

Additional significant acceleration can be obtained by employing recent ad-
vances in approximation algorithms for performing ANN. The authors in [7]
have shown that the time required for retrieving similar features is reduced to
O(dn1/c2

) where for c = 2 this becomes O(dn1/4). Consequently, the proportion
between the naive and accelerated approaches is O(n1−1/c2

) and for c = 2 this
becomes O(n3/4) which in the typical conditions of the data we are dealing with
becomes O(107.5). Thus we claim that the proposed approach to registration
is more than a million times faster than using naive approaches. We also note
that the query time quoted assumes the need to project from high dimension
to low dimension before doing the query. However, since our patches participate
as both search points and query points, we can benefit from pre-computing the
projection of all the points ahead of the query, which reduces the query cost by
O(d). Recall d is O(104) in our case, so this is a substantial improvement.

3 Experiments and Results

The algorithm was tested on a series of EM images of the lateral geniculate
nucleus of a ferret. Each image is about 10000× 10000 pixels large with a pixel
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resolution of 3nm and a slice thickness of 60nm. We evaluated our experiments
on 114 slices which were manually preprocessed to correct or exclude images with
significant artifacts or severe rotations. The approach was validated by compar-
ison to a manual ground truth registration. The manual registration denoted
as (T ∗), was performed by manually selecting corresponding points in a pair of
consecutive images and computing the pairwise transformation based on Horn’s
method [13]. Given a set of corresponding points in two systems, Horn’s method
finds the closed form solution to the ”least square” problem relating these points.
We performed two sets of experiments. The first set of experiments was obtained
with the JL projection of features while the second set was obtained without the
projection. Both experiments compare the results obtained by three automatic
approaches including our EM-ICP-NC approach (see Sec. 2.3), the classic EM-
ICP [9] and Horn’s [13] approach. The L2 difference between the transformations

Before: (a) Fixed Slice (b) Moving Slice (c) Checkerboard of (a) and (b)

Alignment: (d) Manual (e) Automatic with JL (f) Automatic without JL

Checkerboard: (g) Manual(h) Automatic with JL (i) Automatic without JL

Fig. 1. Successive pair of slices before and after alignment. (a) and (b) present the
fixed and moving image before alignment and (c) shows their checkerboard compos-
ite. (d),(e),(f) show the alignments results of the manual, and automatic algorithms
with JL projection and without projection respectively. (g),(h),(i) demonstrate the
checkerboard of the fixed image in (a) and the aligned moving image in (d), (e) and
(f) respectively.
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Table 2. Comparing our results to the manual transformation and to two other auto-
matic approaches. Our algorithm has higher accuracy than previously described meth-
ods. The advantage is obtained both with and without the JL projection.

Dimension EM-ICP-NC EM-ICP Horn

k (with JL projection) 5.41 ± 3.32 45.024 ± 28.56 93.63 ± 56.9

d (without JL projection) 4.93 ± 2.94 20.55 ± 26.74 66.86 ± 53.6

Fig. 2. Effectiveness of template matching for identifying correspondences. The fusion
of the correlation map computed for the patch (a) with the original slice, from which
the patch was extracted (b) and with the successive slice (c). The maxima regions in
both slices (b,c) respectively, are highlighted in red rectangles and enlarged. The red
maxima values in the fusion image correspond to higher correlation values, showing
that the features are a sharp local maxima of the correlation function.

of all three automatic approaches in both sets of experiments are compared to
the ground truth transformation computed (T ∗). Figure 1 shows the results ob-
tained with and without the JL projection compared to the manual registration.
Table 2 presents the results of both experiments. Our EM-ICP-NC automatic
algorithm has a higher accuracy than previously described methods. The advan-
tage is achieved in both set of experiments with and without the JL projection,
with similar results. Thus, we conclude that the projection to low dimensional
space did not reduce the ability to recognize corresponding patches.

To evaluate the effectiveness of template matching for identifying correspon-
dences in various cases of neurobiological objects, we tested patches with
different features, such as myelinated white matter, dendrites, synapses, and
microtubules. The NC function was computed between the features visible in
the image, with patches within the same image and with patches in a successive
image. Figure 2 illustrates the results, demonstrating that the local maxima in
the NC function within the same image is detected in the exact same spot, while
in the next slice the detection is in the area of similar anatomy.

4 Summary

We present a novel algorithm for alignment of large EM images. To our knowl-
edge this is the first attempt to provide the registration algorithm a low
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dimensional representation of the data by utilizing the JL embedding and to
demonstrate the dramatic speed up of the identification of correspondence which
at the same guarantees the robustness and accuracy of the alignment. In this
work we have demonstrated these contributions on real EM data and also con-
structed a full scheme with significant computational savings. We assessed the
impact of dimensionality reduction on the transformation accuracy and shown
for the first time the feasibility and effectiveness of this approach, showing that
the projected features are as effective for registration as the full-dimensionality
features. Future work will evaluate alternative search strategies for the accelera-
tion of accurate correspondence estimation. This will include evaluation of data
structures that support ANN search strategies, such as LSH, and spill-trees. We
will explore faster variants of algorithms to project into k-dimensional space.
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