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Abstract. Probabilistic relational models are an efficient way to learn
and represent the dynamics in realistic environments consisting of many
objects. Autonomous intelligent agents that ground this representation
for all objects need to plan in exponentially large state spaces and large
sets of stochastic actions. A key insight for computational efficiency is
that successful planning typically involves only a small subset of relevant
objects. In this paper, we introduce a probabilistic model to represent
planning with subsets of objects and provide a definition of object rele-
vance. Our definition is sufficient to prove consistency between repeated
planning in partially grounded models restricted to relevant objects and
planning in the fully grounded model. We propose an algorithm that ex-
ploits object relevance to plan efficiently in complex domains. Empirical
results in a simulated 3D blocksworld with an articulated manipulator
and realistic physics prove the effectiveness of our approach.

1 Introduction

Artificial Intelligence investigates systems that act autonomously in complex en-
vironments. Such systems need to be able to reason under time pressure about
their world in order to derive plans of actions and achieve their goals. This re-
quires probabilistic relational knowledge representations that can deal with the
stochasticity of actions, cope with noise and generalize over object instances.
Complex environments typically contain very many objects. Consider for exam-
ple a household robot, that has to represent all kinds of furnitures, dishes, house
inventary etc. together with their properties and relationships. Such realistic do-
mains comprise state spaces that are exponential in the number of represented
objects and large sets of stochastic actions. Research in A.I. over the last years
has led to world models that describe the action effects and state transitions
compactly in terms of abstract logical formulae and can be learned from expe-
rience. However, how to exploit this model compactness for planning remains a
major challenge. Planning in the fully grounded representation is often a hopeless
undertaking as the state space quickly grows for all but the smallest problems.
This problem is often simply ignored by designing the domain carefully to only
contain those domain aspects which are relevant for successful planning. For
truly autonomous agents operating continuously with changing tasks, however,
we require principled ways to make planning in complex environments tractable.
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Models of human cognition provide an inspiring idea of how one may plan in
a highly complex world. Humans are often assumed to possess declarative world
knowledge about the types of objects they encounter in daily life [1] which is
presumably stored in the long-term memory. For instance, they know that piling
dishes succeeds the better the more exactly aligned these dishes are. This ab-
stract knowledge is independent of any concrete dish instances or other unrelated
objects (such as lamps and cars) and is akin to the abstract probabilistic rela-
tional models in A.I.. When planning, human beings may reason about objects
according to their abstract world knowledge [3], i.e., they ground their abstract
world model with respect to these objects. Such reasoning is often assumed to
take place in the working memory, a cognitive system functioning as a work-space
in which recently acquired sensory information and information from long-term
memory are processed for further action such as decision-making [2] [16]. This
system has limited capacity and humans can only take some selected objects into
account – those they deem relevant for the problem at hand. For example, when
planning to prepare a cup of tea, they do not consider the frying pan in the
shelf or a soccer ball in the garage. One can view this as grounding the abstract
world knowledge only with respect to these relevant objects, thereby enabling
tractable planning.

In this paper, we take up this idea and exploit the great advantage of abstract
relational world models to be applicable to arbitrary subsets of objects. First,
we define object relevance in terms of a graphical model. This allows us then
to prove consistency between repeated planning in partially grounded models
restricted to relevant objects and planning in the fully grounded model. Thereby,
we reformulate the original intractable problem into tractable versions where we
can apply any efficient planning method to solve our problem at hand, enabling
real-time planning and planning with quickly changing goals. Empirical results in
an extended simulated 3D blocksworld with realistic physics and an articulated
manipulator using a learned world model show the effectiveness of our approach.

The remainder of this paper is organized as follows. In the next section, we
present relational world models and discuss the difficulties of planning in the fully
grounded representation. In Section 3, we introduce our approach of Relevance
Grounding. In Section 4, we present our empirical results. In Section 5, we discuss
related work before we conclude.

2 Background

2.1 Compact World Models

A relational domain is represented by a relational logic language L: the set of
logical predicates P and the set of logical functions F contain the relationships
and properties that can hold for domain objects. The set of logical predicates A
comprises the possible actions in the domain.

A concrete instantiation of a relational domain is made up of a finite set of
objects O. If the arguments of a predicate or function are all concrete, i.e. taken
from O, we call it grounded. A concrete world state s is fully described by all
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grounded predicates and functions. Concrete actions a are described by positive
grounded predicates from A.

The arguments of predicates and functions can also be abstract logical vari-
ables which can represent any object. If a predicate or function has only abstract
arguments, we call it abstract. We will speak of grounding an abstract formula
ψ if we apply a substitution σ that maps all of the variables appearing in ψ to
objects in O.

A relational model T of the transition dynamics specifies P (s′|a, s), the prob-
ability of a successor state s′ if action a is performed in state s. T is usually
defined compactly in terms of abstract predicates and functions. This enables
abstraction from object identities and concrete domain instantiations. For in-
stance, the effects of trying to grab a cup may be defined by a single abstract
model for all concrete cups. To apply T in a given world state, one needs to
ground T with respect to some of the objects in the domain.

Examples of abstract transition models include relational probability trees for
predicates and functions based on abstract logical formulae [6] and probabilistic
relational rules, e.g. in the form of STRIPS-operators. An example of the latter
are the noisy indeterministic deictic (NID) rules [15] which will be our running
example in this paper and which we briefly review here. A NID rule r is given
as follows

ar(X ) : Φr(X ) →

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

pr,1 : Ωr,1(X )
...

pr,mr : Ωr,mr (X )
pr,0 : Ωr,0

, (1)

where X is a set of logic variables in the rule (which represent a (sub-)set of
abstract objects). The rule r consists of preconditions, namely that action ar

is applied on X and that the state context Φr is fulfilled, and mr +1 different
outcomes with associated probabilities pr,i > 0,

∑
i=0 pr,i = 1. Each outcome

Ωr,i(X ) describes which predicates and functions change when the rule is applied.
The context Φr(X ) and outcomes Ωr,i(X ) are conjunctions of literals constructed
from the predicates in P as well as equality statements comparing functions from
F to constant values. The so-called noise outcome Ωr,0 subsumes all possible
action outcomes which are not explicitly specified by one of the other Ωr,i. The
arguments of the action a(Xa) may be a true subset Xa ⊂X of the variables X
of the rule. The remaining variables are called deictic references DR = X \ Xa

and denote objects relative to the agent or action being performed.
As above, let σ denote a substitution that maps variables to constant objects,

σ : X → O. Applying σ to an abstract rule r(X ) yields a grounded rule r(σ(X )).
We say a grounded rule r covers a state s and a ground action a if s |= Φr and
a = ar. By grounding NID rules, we can predict successor states for a given
state. NID rules can be learned from experience triples (s, a, s′) using a batch
algorithm that trades off the likelihood of these triples with the complexity of
the learned rule-set. For more details, we refer the reader to Pasula et al. [15].
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2.2 Planning in Ground Representations

Our goal is to plan in the ground relational domain: find a “satisficing” ac-
tion sequence that will lead with high probability to states with large rewards.
While a relational transition model T provides a very compact description of
the dynamics of the world, this compactness does not carry over to planning.
Grounding the relational representation language L w.r.t. all domain objects O
results in a state space that is exponential in |O|. Thus, evaluating an action se-
quence is exponential in |O|. Furthermore, the set of ground actions and thus the
search space of plans scales with the number of objects. (Planning is even further
complicated due to the stochasticity of actions.) Planning is only tractable in
case |O| is very small. In most realistic scenarios, |O| is rather large, however.
Fortunately, it often suffices to take only the objects that are relevant for the
planning problem into account. In the next section, we will introduce Relevance
Grounding which formalizes this idea in a systematic way. To plan in grounded
models, we use the PRADA algorithm [14] in this paper. PRADA converts NID
rules into dynamic Bayesian networks, predicts the effects of action sequences
on states and rewards by means of approximate inference and samples action
sequences in an informed way. PRADA has the crucial advantage to evaluate an
action sequence very efficiently, in particular in time linear in its length.

3 Relevance Grounding

In the following, we introduce a probabilistic model which expresses the coupling
between state sequences, action sequences, objects and rewards. This model will
help to formalize what planning with subsets of objects implies. In particular,
we will be able to derive results on planning with subsets of objects – which
corresponds to conditioning on object-sets o.

Assume our domain contains objects O. By M we denote the model grounded
for all objects, including the complete state and action space (all ground predi-
cates and functions w.r.t. O), which defines the state transition dynamics accord-
ing to some given relational transition model T . Let a = (a1, . . . , aT ) denote a
plan, i.e., a sequence of actions. Let s = (s1, . . . , sT ) denote a sequence of encoun-
tered states. We assume that in a given trial (s, a) certain objects are relevant
while others are not. For example, an object o is relevant if it is an argument
of one of the actions in a. We give a concrete definition of object relevance
in Sec. 3.1. For now, we only assume that, in general, object relevance can be
expressed by a conditional probability P (o|s, a) where o is a random variable
referring to a subset of O. Let R denote the event of achieving a reward at the
end of a trial1. We assume the following joint distribution over these random
variables:

P (R,o, s,a;M) = P (R | s, a;M)P (o | s, a;M)P (s | a;M)P (a;M) (2)
1 When we assume a geometric prior on the trial length, the expected reward is equiv-

alent to the sum of discounted rewards when rewards are given in each time-step –
see Toussaint et al. [18] for details.
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Note that all conditional distributions depend on the model M . In absence of
goals or rewards, we assume a uniform prior over plans P (a;M), discounted by
their length T by a discount factor 0<γ< 1 (see footnote 1). In the following,
we will eliminate s, i.e., we consider

P (R,o,a;M) =
∑

s

P (R,o, s,a;M) = P (R | o,a;M)P (o | a;M)P (a;M) ,

(3)
where R now conditionally depends on o.

Generally, planning requires finding the maximizing argument a∗ of the fol-
lowing distribution:

P (a | R;M) ∝ P (R | a ; M)P (a;M) . (4)

Finding plans with high P (a | R;M) is a difficult task for the following rea-
sons: (i) the search space of a scales with the number of objects; (ii) evaluating
P (R | a;M) is difficult asM ’s state space is exponential in the number of objects
O. To overcome this problem, we observe that we can decompose

P (a | R;M) =
∑

o P (a | o, R;M)P (o | R;M) (5)

where P (o | R;M) is defined as

P (o | R ; M) ∝
∑

a

P (R | o, a ; M)P (o | a;M)P (a;M) . (6)

P (o | R;M) is a measure for the relevance of object-sets with respect to the
reward. Note that this posterior favors small object-sets due to the prior over
plan lengths in P (a;M). If every successful plan makes use of object o, then for
each o with P (o | R ; M) > 0 we have o ∈ o . In this case, we call o necessary for
R. Using this formalization of the relevance of object-sets, Eq. (5) provides us
a way to decompose the above planning problem into two stages: (i) sampling
of object-sets using P (o | R;M); (ii) finding plans with high P (a | o, R;M)
corresponding to planning conditioned on a set of relevant objects. The key idea
is that the conditioning on o in stage (ii) may significantly reduce the cost of
planning, as we will discuss below.

3.1 A Sufficient Definition of Relevance

We will now provide a definition of P (o|s, a) which we have neglected thus far.
For a given pair (s,a), we define the set Ω of relevant object-sets as

Ω(s,a) = {o ⊆ O | ∀t, 0≤ t<T : P (st+1 | st, at;M) = P (st+1 | st, at;Mo)
∧ ∀o′⊂o,o′ 
=o ∃t, 0≤ t<T : P (st+1 | st, at;M) 
= P (st+1 | st, at;Mo′)} (7)

whereMo is the reduced model including only the objects o with their groundings
of predicates and functions. P (st+1|st, at;Mo) is defined such that all predicates
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and functions with at least one argument o 
∈o persist from st and are ignored
while calculating transition probabilities, and we define the action prior in the
reduced model as P (a;Mo) = P (a|o;M). Ω(s, a) comprises minimal object-sets
that are required to predict the state transitions correctly for a specific trial
(s,a). Note that |Ω(s,a)| ≥ 1 for all (s, a). We define P (o|s, a) as

P (o | s, a) =
I(o ∈ Ω(s, a))

|Ω(s, a)| . (8)

Intuitively, relevant object-sets are those that are taken into account to calculate
the transition probabilities in s for a given a. Clearly, they include the objects
which are manipulated, i.e., whose properties or relationships change. We call
these actively relevant. There are also passively relevant objects which are taken
into account by the world dynamics model T . For instance, imagine the task to
go to the kitchen and prepare a cup of tea. The tea bag, the cup and the water
heater are actively relevant objects. If the kitchen has two doors and one of them
is locked, then the latter is passively relevant: we cannot manipulate, i.e. open,
it, but it plays a role in planning as its being locked determines the other door
to be necessary. A more technical example of object relevance is given below.

In general, there might be alternative interesting definitions of object rele-
vance, e.g. where the transition probabilities in Eq.(7) only hold approximately.
We chose the above definition because it is sufficient to a certain consistency for
planning in reduced models:
Lemma 1. When conditioning on a subset o of relevant objects, the following
probabilities in the reduced model Mo are the same as in the full model M :
(a) State sequences: P (s | o,a;M) = P (s | a;Mo)
(b) Rewards: P (R | o,a;M) = P (R | a;Mo)
(c) Action sequences: P (a | o, R;M) = P (a | R;Mo)

Proof. If o ∈ Ω(s,a), we have:

P (s|o,a;M)=
T−1∏

t=0

P (st+1|o, st, at;M)=
T−1∏

t=0

P (st+1|st, at;Mo)=P (s|a;Mo) .(9)

If o 
∈ Ω(s, a), we have P (s | o, a;M) = 0. Similarly, s cannot be predicted in
Mo as only the irrelevant object-set o is available, so we get P (s | a;Mo) = 0.
Furthermore, we have:

P (R | o,a;M) =
∑

s

P (R, s | o,a;M) =
∑

s

P (R|s,o, a;M)P (s|o, a;M)(10)

=
∑

s

P (R | s, a;M)P (s | a;Mo) I(o ∈ Ω(s, a)) (11)

=
∑

s:o∈Ω(s,a)

P (R | s, a;M)P (s | a;Mo) = P (R | a;Mo) (12)

Finally, we have:

P (a | o, R;M) ∝ P (R | o, a;M) P (a | o;M) (13)
= P (R | a;Mo) P (a;Mo) ∝ P (a | R;Mo) � (14)
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Table 1. Example of active and passive object relevance. Objects B and C are actively
relevant as their properties are changed. A is passively relevant as it determines rule
2 to model the transition dynamics. If it was ignored, rule 1 would be used instead
yielding wrong state transition probabilities.

Action: grab(B)

Rule 1:

grab(X) : on(X, Y ),¬on(Z, Y )

→ 1.0 : inhand(X), ¬on(X, Y )

Rule 2:

grab(X) : on(X, Y ), on(Z, Y )

→ 0.8 : inhand(X), ¬on(X, Y )

0.2 : ¬on(X, Y )

From Lemma 1 and Eq. (5) the following proposition follows directly:

Proposition 1. Given the joint in Eq. (2) and the definition of P (o | s, a) in
Eq. (8), it holds:

P (a | R;M) =
∑

o

P (a | R;Mo) P (o | R;M) (15)

An illustrative example of object relevance. The scenario in Table 1 illus-
trates active and passive object relevance. Two small blocks A and B are on top
of a big block C. Our goal is to hold B inhand. This can be achieved by means
of a plan consisting of a single action grab(B). Our transition dynamics model
contains two NID rules to model the grab-action. Rule 1 applies if the target
block is the only block on top, in which case grab always succeeds. Rule 2 applies
if the target block is not the only block on top. In this case, grab only succeeds
with probability 0.8; otherwise with probability 0.2, grabbing fails due to lack
of space and the target block is pushed off the big block instead. Clearly, in our
situation we have to use rule 2. Blocks B and C are manipulated and thus are
actively relevant, whereas A is passively relevant as it determines rule 2 to ap-
ply. If A was ignored, we would use rule 1 – yielding an erroneous higher success
probability. Similar scenarios are typical in physical worlds: the probabilities of
successful planning change when objects (e.g. potential obstacles) are added to
or removed from the scene even when they are not actively manipulated.

3.2 Planning with Relevant Objects

Our definition of object relevance and the subsequent discussion led to a crucial
observation: to find plans with high P (a | R;M), it is not necessary to use the
full model M including all objects O. As Proposition 1 shows, an alternative is
to find plans in the reduced models P (a | R;Mo) for object-sets o with high
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Algorithm 1. Relevance Grounding
Input: objects O, goal τ , relational transition model T , relevance distribution q(·),
number of relevance groundings Nrel, number of verifications Nver

Output: action sequence a

for i = 1 to Nrel do � Relevance grounding
Sample object-set oi ⊂ O according to q
Build reduced model Moi

ai = plan(τ ;Moi , T ) � Plan in reduced model
ψ(ai) = P (R | ai;Moi , T ) � Value in reduced model

end for
for i = 1 to Nver do � Verifying in original model

Let a denote plan with i-th largest ψ
Calculate Ψ(a) = P (R | a;M, T ) � Value in original model

end for
return argmaxaΨ(a)

relevance P (o | R;M). This makes planning more efficient due to the reduced
state and action spaces in Mo.

Obviously, we do not know P (o | R;M). If we knew the reward likelihoods
for all plans, i.e., if we had already planned, we could calculate this quantity
according to Eq. (6). However, planning is just the problem we are trying to
solve. Thus, we have to estimate this quantity by some distribution q(·) over
object-sets resulting in the approximate distribution Q(·) over plans defined as

Q(a;R,M) =
∑

o P (a | R;Mo) q(o;R,M) ≈ P (a | R;M) . (16)

The quality of Q(·) depends on the quality of the approximate relevance distri-
bution q(·). If q(·) is not exact, then a plan found in Mo may have lower success
probability when planning in M instead (cf. Table 1). Therefore, it is a good
idea to verify the quality of the proposed plan in the original model M or in a
less reduced model Mo′ with o ⊂ o′. This requires algorithms that can exploit
the transition dynamics T to efficiently calculate P (R |a) also in large models.

Algorithm 1 presents our complete Relevance Grounding method. Given an
estimator for object-set relevance q(·), we can find plans with approximately
high P (a | R;M) as follows: (i) we take samples o from q(·); (ii) we plan in
the reduced models Mo; (iii) we verify the resulting plans in the original or a
less reduced model; (iv) we return the plan with the best verified value. In this
paper, we employ NID rules as transition dynamics model T and use the PRADA
algorithm for planning which is in particular appropriate for verification as it
evaluates an action sequence in time linear in its length.

3.3 Learning Object Relevance

A crucial part in our proposed method is the relevance estimator of object-sets.
Learning such an estimator is a novel and interesting machine learning problem.
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As we are using relational representations, we can generalize over object identi-
ties in our planning goals and transfer the knowledge gained in previous planning
trials to new, but similar problems. For a given goal τ , we can use our world
dynamics model to create training instances (σ0, τ,o, P (o | R)). This enables
us to learn object relevance based on nothing more than internal simulation (in
contrast to “real” experiences) – akin to human reflection about a problem. σ0 is
a description of the start state s0 and may involve all types of information, such
as discrete, relational and continuous features. We can employ any regressor that
can make use of the chosen features to learn a function q(o; s0, τ) → IR. A full
approach to learning object relevance is beyond the scope of this paper, but in
our first experiment (cf. Section 4.1) we will present an example of how to learn
object relevance in a straightforward way, based purely on internal simulation.

4 Experiments

We test our Relevance Grounding approach in an extended simulated blocks
world where a robot manipulates blocks and also balls scattered on a table. We
use a 3D rigid-body dynamics simulator (ODE) that enables a realistic behavior
of the objects. For instance, piles of objects may topple over or objects may
even fall off the table (in which case they become out of reach for the robot).
Object classes show different characteristics. For example, it is almost impossible
to successfully put an object on top of a ball, and building piles with small
objects is more difficult. The robot can grab objects and try to put them on
top of other objects or on the table. Its actions are affected by noise so that
resulting object piles are not straight-aligned. We assume full observability of
triples (s, a, s′) that specify how the world changed when an action was executed
in a certain state. We represent the data with predicates block(X), ball(X),
table(X), on(X,Y ), out(X), inhand(X), upright(X), clear(X) ≡ ∀Y.¬on(Y,X)
and functions size(X), color(X) for state descriptions and puton(X), grab(X)
and doNothing() for actions. If there are o objects and f different object sizes
and colors, the action space contains 2o+1 actions while the state space is
huge with f2o2o2+6o different states (not excluding states one would classify as
impossible given some intuition about real world physics).

We use NID rules described in Sec. 2.1 to model the state transitions. We
employ the rule learning algorithm of Pasula et al. [15] with the same parameter
settings to learn three different sets of fully abstract NID rules from independent
training sets of 500 experience triples each. Training data to learn rules are
generated in a world of ten objects (six blocks, four balls) of two different sizes
by performing random actions with a slight bias to build high piles. The resulting
rule-sets contain 11, 12 and 12 rules respectively. We use the PRADA algorithm
[14] for planning. We test our approach in worlds with varying numbers of blocks
and balls of two different sizes. Thus, we transfer the knowledge gained in the
training world to different, but similar worlds by using abstract NID rules. In
each experiment, for each object number we create five start situations with
different objects. Per rule-set and start situation, we perform three independent
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runs with different random seeds. In all scenarios, we make the assumption
that relevant object-sets contain 5 objects. We investigate different estimators to
determine these 5 objects. To evaluate each approach, we compute the planning
times and the mean performance over the fixed (but randomly generated) set of
45 test scenarios (3 learned rule-sets, 5 situations, 3 seeds).

4.1 Building High Piles

In our first experiment, we repeat the experiment of Pasula et al. which investi-
gates building high piles. Our starting situations are chosen such that all objects
have height 0 (are on the table) and our reward is the total change in object
heights. We let the algorithm run for 10 time-steps. We set PRADA’s planning
horizon to d = 6 and use a discount factor of γ = 0.95. If the world was deter-
ministic and objects could be stacked perfectly (such that objects could also be
stacked on balls), the optimal discounted total reward would be 37.04.

We investigate three different relevance estimators to determine the sets of
relevant objects. The random estimator samples objects randomly and indepen-
dently. The hand-made heuristic assigns high probability to big blocks (since
these are best to build with) and to objects that are either part of a high pile
or on the table (in order to build higher piles). Once it has sampled an object,
it assigns high probability to objects within the same pile as these might be
required for deictic referencing in the NID rules (passive object relevance).

Furthermore, we investigate a simple learned estimator of object relevance
from which we sample objects independently. We use linear regression to learn
from discrete and logical object features, namely object size, type, color, height
and clearedness. Training data are generated solely by internal simulation with
the PRADA algorithm (in contrast to using the “real” ODE simulator) as follows:
for a given situation, we randomly sample 5 objects and derive a plan in the
partially grounded network; this plan is then evaluated in the full network and
the resulting value is used as relevance estimate for these 5 objects. Note that
this procedure does not require real experiences as it is fully based on internal
reasoning about which features make an object relevant according to the learned
world model (the NID rules in our case). The resulting learned estimator ignores
object color as expected, but takes all other features into account, favoring clear
big blocks at high heights. We compare these three relevance estimators to the
full-grounding baseline which plans in the fully grounded model.

Table 2 presents our results. The mean performance of the heuristic is compa-
rable to the full-grounding baseline. The performance of the learned estimator is
comparable or only slightly worse than the heuristic, depending on the number
of objects and the number Nrel of partially grounded models, but always sig-
nificantly better than the random estimator. The performance of all estimators
improves with increasing Nrel, but this effect diminishes if Nrel is large. Plan-
ning in the fully grounded model is hopelessly inefficient, in particular for large
worlds. The same performance levels can be achieved by means of Relevance
Grounding in only tiny fractions of this planning time, which is independent of
the object number and thus constant over all investigated domain sizes.
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Table 2. Building high piles problem: (a) Mean rewards (changes in tower heights),
(b) planning times, (c) details over 45 runs (3 rule-sets, 5 start situations, 3 seeds).
Error bars for the rewards give the std. dev. of the mean estimator. Nrel denotes the
number of relevant reduced models (cf. Algorithm 1). Performing no actions gives a
reward of 0.
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heuristic Nrel =10 20.69 ± 1.16 3.85 ± 0.15

learned Nrel =1 14.53 ± 0.77 0.42 ± 0.03

learned Nrel =5 18.26 ± 0.94 1.90 ± 0.13

learned Nrel =10 18.34 ± 0.82 3.81 ± 0.11

full-grounding 21.12 ± 1.21 561.78 ± 186.76

30

random Nrel =1 9.16 ± 0.76 0.38 ± 0.03

random Nrel =5 11.90 ± 0.64 1.93 ± 0.12

random Nrel =10 14.00 ± 0.69 3.84 ± 0.25

heuristic Nrel =1 16.23 ± 1.05 0.39 ± 0.02

heuristic Nrel =5 21.08 ± 1.03 2.01 ± 0.13

heuristic Nrel =10 20.21 ± 1.10 3.84 ± 0.16

learned Nrel =1 16.45 ± 0.77 0.42 ± 0.04

learned Nrel =5 17.72 ± 0.88 1.99 ± 0.04

learned Nrel =10 18.44 ± 0.75 3.78 ± 0.24

full-grounding 19.99 ± 1.11 1770.55 ± 916.44

(b) (c)

4.2 Desktop Clearance

The goal in our second experiment is to clear up the desktop (see Fig. 1). Objects
are lying splattered all over the desktop. An object is cleared if it is part of a
pile containing all other objects of the same class, which can be defined as

cleared(X) ≡ ∀Y : sameClass(X,Y ) → samePile(X,Y ) . (17)

A class is defined in terms of color and size, but not type so that a class contains
both blocks and balls. In our experiments, classes are made up of 2-4 objects
with at most 1 ball (in order to enable successful piling). Our starting situations
contain some piles, but only with objects of different classes. We let the algo-
rithm run for 30 time-steps. For planning, we set PRADA’s planning horizon
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Fig. 1. Clearance task. The robot has to clear up the desktop by piling objects of the
same size and color.

to d = 20 and use a discount factor of γ = 0.95. If the world was determinis-
tic and objects could be stacked perfectly, the optimal values would be 86.91
for worlds with 10 objects and 110.85 for worlds with 20 and 30 objects. We
investigate two relevance estimators. The random estimator samples randomly
and independently among all objects. The heuristic estimator chooses randomly
among the objects which are not cleared yet and then takes all other objects of
the same class into account. Nearest neighbors are used to fill up the object-set.
While this heuristic is hand-made, its idea can be derived from the logical re-
ward description in Eq. (17) which states the importance of classes in relevant
object-sets on the left side of the implication. How this can be done in principled
ways is a major direction of future work.

Table 3 presents our results. The random estimator performs poorly since its
reduced models contain mostly only single instances of a class. This is disad-
vantageous as planning requires at least a second object of the same class and
singleton instances are always cleared within reduced models which are thus a
bad approximation of the full model. The mean performance of the heuristic
estimator is significantly better than the full-grounding baseline, in particular in
worlds with many objects. Note that the full-grounding baseline cannot find an
optimal solution due to the huge search space. In contrast to planning in the fully
ground model, the relevance grounding planning approaches are independent of
the number of objects and thus several orders of magnitude faster.

We also investigate the use of verification of the plans found in the reduced
models (cf. Algorithm 1). We evaluate the Nver = 3 best reduced-model plans
in a less reduced model containing 10 objects where the missing 5 slots are
filled in by nearest neighbors. Thereby, information about objects within the
same piles may be taken into account. Our results show that this improves the
mean performance for both relevance estimators significantly at only a small
increase in computational cost. In particular, this greatly increases the perfor-
mance of the random estimator in worlds with 10 objects. In larger worlds, the
random estimator almost never finds good plans in which case verification cannot
help.
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Table 3. Clearance problem: (a) Mean rewards, (b) planning times, (c) details over
45 runs (3 rule-sets, 5 start situations, 3 seeds). Error bars for the rewards give the
std. dev. of the mean estimator. Nr denotes the number of relevant reduced models
Nrel, Nv the number of partial plans Nver that are verified in a less reduced model
(cf. Algorithm 1). Performing no actions gives a reward of 0.
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Obj. Config Reward Time

10

random Nr=1 9.33 ± 1.67 15.26 ± 0.21
rand. Nr=5 4.59 ± 0.78 75.73 ± 1.53
rand. Nr=10 2.58 ± 0.73 153.86 ± 3.37
rand. Nr=5, Nv=3 17.54 ± 1.92 84.63 ± 2.42
rand. Nr=10, Nv=3 14.76 ± 1.85 162.25 ± 7.60
heuristic Nr=1 34.50 ± 2.44 15.31 ± 0.27
heur. Nr=5 41.88 ± 3.08 75.02 ± 1.64
heur. Nr=10 38.48 ± 2.67 151.92 ± 2.94
heur. Nr=5, Nv=3 46.46 ± 3.12 84.98 ± 1.83
heur. Nr=10, Nvr=3 49.15 ± 2.81 161.79 ± 3.63
full-grounding 29.77 ± 2.02 153.93 ± 13.51

20

random Nr=1 4.68 ± 1.07 16.24 ± 0.44
rand. Nr=5 0.88 ± 0.45 78.92 ± 1.08
rand. Nr=10 0.16 ± 0.11 163.21 ± 4.93
rand. Nr=5, Nv=3 2.62 ± 0.90 90.25 ± 1.74
rand. Nr=10, Nv=3 0.72 ± 0.58 168.91 ± 3.31
heuristic Nr=1 42.77 ± 3.19 15.89 ± 0.48
heur. Nr=5 47.72 ± 2.96 80.24 ± 1.38
heur. Nr=10 43.34 ± 2.60 158.53 ± 2.06
heur. Nr=5, Nv=3 51.03 ± 3.12 88.94 ± 1.99
heur. Nr=10, Nv=3 56.76 ± 2.68 172.27 ± 5.01
full-grounding 29.19 ± 1.98 1537.37 ± 225.96

30

random Nr=1 3.09 ± 1.09 16.06 ± 0.41
rand. Nr=5 0.52 ± 0.26 80.11 ± 1.47
rand. Nr=10 0.02 ± 0.02 162.17 ± 6.34
rand. Nr=5, Nv=3 1.16 ± 0.51 92.17 ± 2.52
rand. Nr=10, Nv=3 0.16 ± 0.10 178.96 ± 3.56
heuristic Nr=1 42.31 ± 3.06 16.47 ± 0.43
heur. Nr=5 59.79 ± 3.33 81.34 ± 3.87
heur. Nr=10 53.29 ± 3.50 159.01 ± 3.39
heur. Nr=5, Nv=3 55.00 ± 3.54 90.26 ± 3.46
heur. Nr=10, Nv=3 58.01 ± 3.42 168.51 ± 5.16
full-grounding 22.42 ± 2.14 5893.81 ± 1006.56

(b) (c)

5 Related Work

The problem of planning in stochastic relational domains has been approached
in quite different ways. The field of Relational Reinforcement Learning (RRL)
[19] investigates value functions and Q-functions that are defined over all pos-
sible ground states and actions of a relational domain. The idea is to describe
important world features in terms of abstract logical formulas enabling general-
ization over objects and situations. Examples of model-free approaches employ
relational regression trees [8] or instance-based regression using distance metrices
between relational states such as graph kernels [7] to learn Q-functions. Model-
free approaches have the disadvantage to be inflexible as they enable planning
only for the specific problem type used in the training examples. In contrast,
model-based RRL approaches first learn a relational world model from the state
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transition experiences, for example in form of relational probability trees for in-
dividual state properties [6] or SVMs using graph kernels [12]. One way to make
use of the resulting model is to sample look-ahead trees of state transitions in
Q-learning, i.e., to work with ground states. All approaches discussed thus far
make use of ground states and actions and may well profit from our relevance
grounding approach. Consider for example the instance-based approaches where
relevance grounding will lead to tractable instance representations.

A promising alternative is to compute abstract value functions by working in
the “lifted” abstract representation without grounding or referring to particular
problem instances. This requires the learned (or prespecified) model to be com-
plete. Symbolic Dynamic Programming [5] investigates exact solution methods
for relational MDPs. The idea is to construct minimal logical partitions of the
state space required to make all necessary value function distinctions. For ex-
ample, Kersting et al. [13] present an exact value iteration for relational MDPs.
Sanner et al. [17] exploit factored transition models of first-order MPDs to ap-
proximate the value function based on linear combinations of abstract first-order
value functions. Their work shows that under certain assumptions (such as ad-
ditive rewards), it is possible to derive efficient solution techniques. Nonetheless,
this promising line of research is only in its beginnings and is confronted with
serious technical challenges. It requires complex theorem proving to keep the
logical formulas that represent sets of underlying states manageable.

All of the above approaches compute full policies over complete state and
action spaces. Instead, one may restrict oneself to deriving plans for a given
start state. When grounding the full model, one might in principle use any of
the traditional A.I. planning methods used for propositional representations, see
[20] and [4]. An interesting strategy to work in a grounded model in a principled
way is to consider only a small relevant subset of the state space which is derived
from the start state and the planning goal. In contrast to our approach, the
resulting subspace still represents all objects, thus the action space size is not
decreased. A straight-forward way to create such a subspace are look-ahead trees
for the start state that estimate the value of an action by taking samples of the
corresponding successor state distribution [15]. Another idea is to maintain an
envelope of states, a high-utility subset of the state space [9] which can be used
to define a relational MDP. This envelope can be further refined by incorporating
nearby states in order to improve planning quality. A crucial part of this approach
is the initialization of the envelope which is based on an initial straight-line
path from the start state to a goal state using a heuristic forward planner (e.g.,
by making this planning problem deterministic by only considering the most-
probable successor state of an action). The envelope-based approach depends
strongly on the efficiency and quality of this initial planner which is still faced
with the complexity of the action space and its dependence on the number of
objects, thus being applicable only for rather small planning horizons.

Action space complexity can be decreased by noting that if the identities of
objects do not matter but only their relationships, then different equivalent ac-
tions may lead to equivalent successor states [10]. These are states where the
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same relationships hold, but not necessarily with the same objects. Relevance
grounding accounts for this idea by defining different object subsets to be rel-
evant for the planning problem at hand. Action equivalence can be exploited
during planning by only considering one sampled action per action equivalence
class which significantly reduces the search space. If identity matters for a large
number of objects, however, then this approach does not yield significant im-
provements. Another way to reduce the state space complexity is to look only at
a subset of the logical vocabulary, i.e., ignore certain predicates and functions
[11]. This helps when combined with the action equivalence approach as state
descriptions become shorter and more approximate and the number of state
equivalences increases. All these methods just discussed are complementary to
our approach and when applied in a reduced grounded model within the rele-
vance grounding framework might yield a strong way to plan efficiently in highly
complex domains.

6 Discussion and Conclusions

In this paper, we have presented an approach for efficient planning in stochastic
relational worlds based on exploiting object relevance. We define object relevance
in terms of a graphical model. We have derived a systematic framework to plan in
partially grounded models which we have proven to be consistent with planning
in the fully grounded model. Empirical results show our approach to be effective
in complex relational environments. Also, we have argued that our approach
has interesting analogies to human cognition. Our framework is independent of
the concrete planning algorithm used within the reduced models. In particular,
it can well be combined with other approaches to increase planning efficiency
in stochastic relational domains that have recently been introduced, such as
envelope-based methods [9].

A key part for our framework and our major direction of future research is
the estimator of object relevance. We have provided a successful example of
how relevance can be learned from object features by means of nothing more
than internal simulation, but this is clearly only preliminary. In our point of
view, learning to estimate the relevance of objects is a formidable problem for
machine learning, as a huge variety of methods using discrete, continuous, and
logical features can be applied. Clearly, this is a difficult problem, bearing in
mind that human beings often take a long time until they master certain types
of planning problems. However, estimating object relevance appears to us to be
a crucial prerequisite to be able to plan in the highly complex real world.
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