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Abstract. This paper proposes a new hash construction based on the
widely used Merkle-Damg̊ard (MD) iteration [13,9]. It achieves the three
basic properties required from a cryptographic hash function: collision
(Coll), second preimage (Sec) and preimage (Pre) security. We show
property preservation for the first two properties in the standard security
model and the third Pre security property is proved in the random oracle
model. Similar to earlier known hash constructions that achieve a form
of Sec (eSec [16]) property preservation [4,17], we make use of fixed key
material in the iteration. But while these hashes employ keys of size at
least logarithmic in the message length (in blocks), we only need a small
constant key size. Another advantage of our construction is that the
underlying compression function is instantiated as a keyless primitive.

The Sec security of our hash scheme, however, relies heavily on the
standard definitional assumption that the target messages are sufficiently
random. An example of a practical application that requires Sec security
and satisfies this definitional premise on the message inputs is the popular
Cramer-Shoup encryption scheme [8]. Still, in practice we have other
hashing applications where the target messages are not sampled from
spaces with uniform distribution. And while our scheme is Sec preserving
for uniform message distributions, we show that this is not always the
case for other distributions.

1 Introduction

Hash functions in cryptography are used to compress inputs of arbitrary length
to outputs of a fixed size. A typical way to build a hash function is to iteratively
apply a fixed-input length compression function. Practical hash functions today
are predominantly based on this principle and the most widespread application
of an iterative construction is the Merkle-Damg̊ard (MD) hash [13,9]. The main
security feature of the MD hash is its collision (Coll) security preservation, which
means that if the compression function is collision secure, then the iterated hash
function is collision secure as well. But collision security is not the only security
property required from hash functions. A good hash function should also be
second preimage (Sec) and preimage (Pre) secure.

The recent attacks of Wang et al. [18,19,20], however, have revealed weak-
nesses in the expected ideal collision strength of the SHA-0 and SHA-1 hash
functions. These and earlier MD5 collision attacks suggest that designing a col-
lision secure hash function may turn out to be difficult. With the loss of the
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Coll security guarantee current hash functions fail also to provide apt security
for the weaker security properties of Sec and Pre (see the attacks of [11] and the
counterexamples of [2]).

The National Institute of Standards and Technology (NIST) of US has in
turn addressed the problem by announcing a call for new hash functions [14].
The minimal security requirements stated in the call for proposals are Coll, Sec
and Pre security with computational complexity of order 2n/2, 2n−� and 2n,
respectively. Here the hash values are of n bits and the Sec security is expressed
in terms of the message length in blocks (2�). We believe that proposals for new
hash functions should provide guarantees for security preservation for not only
Coll, but also Sec and Pre security. Preservation proofs are important because
they allow one to rely on the hash function strength with respect to a concrete
security property, independently of the weaknesses of the other properties.

The problem of designing a property-preserving iterations has been earlier
investigated by [2,5,6,4,7,10,17]. Although these papers sometimes aim for prop-
erties different from the ones mentioned above, showing a property preserving
hash function is one of their main goals.

In this paper we propose a new iterative hash function, that is based on the
MD hash principle, and provably preserves the notions of Coll and Sec security
in the standard security model and achieves Pre security when the compression
function is instantiated as a random oracle. Our reduction for Coll is tight and
we lose a factor of the message length (in blocks) in the Sec preservation. In the
estimated Sec gap we are also able to mount the Sec attacks of [11,1]. Still, as
we show, these attacks are only possible for target messages of a very specific
structure. Finding a preimage message takes approximately 2n evaluations of
the compression function when it is modeled as a random oracle.

Our hash design benefits from a keyless compression function and makes use
of keys in the iteration. We call this the keyless compression function – keyed it-
eration setting. Compared to the dedicated key setting of [6] (keyed compression
function – keyed iteration), we achieve the three basic properties with a more
practically understood and employed primitive, namely a keyless compression
function. In the iterative portion of our design, we have reasons to believe that
achieving security guarantees for Sec security is hard without the use of some
form of randomization (provided by the keys in our case). A publicly known
key selects a single function from a family of hash functions and once chosen at
random it remains fixed for the hash algorithm. Note however, that any security
claims for keyed hash functions hold only as long as the keys are generated hon-
estly. If the keys are maliciously chosen, then they become exploitable constants
and could potentially give rise to future attacks. A possible way to employ fixed
keys in practice is to make the key selection process open and fixed in standard.

Achieving Coll and Sec preservation in the standard security and Pre security
in the random oracle model partially attempts to answer the question from [2] if
a multi-property preserving hash transform is realizable in the standard model.
To achieve a seven-property-preserving hash function the authors of [2] benefit
from the use of a random oracle for the mask (key) generation. Also, compared
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to [4,17], which show the eSec property preservation, we use the key material
sparsely. While the latter hash constructions use keys of length at least logarith-
mic in the message size (in blocks), we only need keys of constant length, b + 2n
bits, where b and n are the block and hash sizes, respectively.

Together with the basic hash function, we present some generalized versions of
it. These vary according to the order in which the input values are processed by
the compression function F. Still, the optimal input ordering for F in the iteration
heavily depends on the specifications of the concrete compression function.

In the line of this work, another interesting problem has come to our notice.
While our hash scheme offers a theoretically sound Sec preservation proof, in
practical scenarios this result may lack the claimed strength. Why does this dis-
crepancy occur? The standard Sec security definition assumes a uniform target
message space distribution. We use this fact in our hash design to extract ran-
domness from the message and mix it with the chaining portion of the iteration.
A prominent example application that requires Sec security and where the hash
inputs are chosen uniformly at random is the Cramer-Shoup cryptosystem [8]1.
However, in some applications, the target message space may not have the uni-
form distribution. By building a Sec secure compression function, we are able to
demonstrate a Sec attack on our hash only for such biased distributions.

On the other hand, working with non-uniform target message distributions
allows for better message visibility. Some messages are hashed with higher prob-
ability and thus are more predictable. This interpretation deviates from the Sec
definition and is a shift towards the notion of target collision security, or eSec
from [16], where the messages are fully predictable (chosen) by the adversary.
This observation can be interpreted in two ways. One way to think about the
problem is to work with variants of the Sec definitions that take into account
the target message distribution. Another solution may be to provide appropri-
ate message input randomization to guarantee the randomness of the message
inputs. In the final part of our paper we provide a short discussion on the issue.

2 Security Definitions

Notation. Let ε be the empty string. x‖y denotes the concatenation of strings x
and y. If x is a string, then x|msbz and x|lsby specify the most z and least y,
respectively, significant bits of x. |x| is the length in bits of the string x and x|ji
is the substring of x containing the i-th through j-th bit of x, inclusive.

If S is a set, then x
$← S denotes the uniformly random selection of an element

from S. We let y ← A(x) and y
$← A(x) be the assignment to y of the output of

a deterministic and randomized algorithm A, respectively, when run on input x.
1

“For this purpose, we will use a family of hash functions, such that given a
randomly chosen tuple of group elements and randomly chosen hash function
key, it is computationally infeasible to find a different tuple of group elements
that hashes to the same value using the given hash key.”

Definition of target collision resistance from [8] matching the standard Sec security
one.
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An adversary is an algorithm with polynomial running time, possibly with
access to some oracles. To avoid trivial lookup attacks, it will be our convention
to include in the time complexity of an adversary A its running time and its
code size (relative to some fixed model of computation).

In our keyless compression function-keyed iteration setting we model the fixed-
input-size function to be a keyless compression function. The iterative arbitrary-
input-size hash function on the other hand is a family of functions indexed by a
fixed random key.

Security of compression functions. Let F : {0, 1}b+n → {0, 1}n be a
compression function that takes inputs of fixed size (n + b) bits and maps them
to outputs of size n. First we define the following advantage measures for Coll
and Sec security for a fixed adversary A and message length λ ∈ N:

AdvColl
F (A) = Pr

[
M ′, M $← A(ε) : M �= M ′ and F(M) = F(M ′)

]

Adv
Sec[λ]
F (A) = Pr

[
M

$← {0, 1}λ ; M ′ $← A(M) : M �= M ′ and F(M) = F(M ′)
]

Adv
Pre[λ]
F (A) = Pr

[
M

$← {0, 1}λ ; Y ← F(M) ; M ′ $← A(Y ) : F(M ′) = Y
]

We say that F is (t, ε) atk secure for atk ∈ {Sec, Pre} if Advatk[λ]
F (A) < ε for all

adversaries A running in time at most t and λ = b+n. Note that it is impossible to
define security for the case of Coll in an analogous way. Indeed, if collisions on F
exist, then an adversary A that simply prints out a collision that is hardcoded into
it always has advantage 1. Rather than defining Coll security through the non-
existence of an algorithm A, we follow Rogaway’s human-ignorance approach [15]
and use the above advantage function as a metric to relate the advantage of an
adversary A against the hash function to that of an adversary B against the
compression function.

Security of hash functions. A hash function family is a function H : K ×
M → Y where the key space K and the target space Y are finite sets of bit
strings. The message space M could be infinitely large; we assume that there
exists at least one λ ∈ N such that {0, 1}λ ⊆ M. The key K is an index that
selects a instance from the function family. Following [16], we use the following
advantage measures:

AdvColl
H (A) = Pr

[
K

$← K ; (M, M ′) $← A(K) :
M �= M ′ and

H(K,M) = H(K,M ′)

]

Adv
Sec[λ]
H (A) = Pr

[
K

$← K ; M
$← {0, 1}λ

M ′ $← A(K, M)
:

M �= M ′ and
H(K, M) = H(K, M ′)

]

Adv
Pre[λ]
H (A) = Pr

[
K

$← K ; M
$← {0, 1}λ

Y ← H(K, M) ; M ′ $← A(K, Y )
: H(K, M ′) = Y

]

For atk = Coll, we say that H is (t, ε) atk secure if Advatk
H (A) < ε for all

adversaries A running in time at most t. For atk ∈ {Sec, Pre}, we say that H is
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(t, ε) atk secure if Advatk[λ]
H (A) < ε for all adversaries A running in time at most

t and for all λ ∈ N such that {0, 1}λ ⊆M.
Our security claims in the random oracle model consider (qRO, ε) atk-security,

where qRO is the total number of queries that the adversary A makes to the a
random oracle. In the same model, we assume that the compression function
F : {0, 1}b+n → {0, 1}n behaves as a random oracle. That means F is chosen
uniformly at random from the set of all functions with the respective domain
and range space and is publicly computable function.

Security preservation. Our goal is to build an infinite-domain hash func-
tion family H out of a limited-domain compression function F so that the hash
function “inherits” its Coll and Sec security from the natural analogues of these
properties for F. For atk = Sec, we say that H preserves atk security if H is
(t, ε) atk secure whenever F is (t′, ε′) atk secure, for some well-specified relation
between t, t′, ε, ε′. For the case of Coll, we have to be more careful because, as
pointed out before, (t, ε)-Coll security cannot be defined for the keyless com-
pression function F. Rather, we follow Rogaway [15] by saying that collision
resistance is preserved if, for an explicitly given Coll adversary A against H,
there exists a corresponding, explicitly specified Coll adversary B, as efficient as
A, that finds collisions for F.

3 The Basic Construction

3.1 The BCM Hash Function

In this section we present our hash mode. We refer to it as the backwards chaining
mode, or the BCM hash (see Fig. 1).

The Hash Function. The BCM F hash uses a fixed-input-length compression
function F : {0, 1}b+n → {0, 1}n where b ≥ n and takes as inputs a message
M of arbitrary length and a key K = K1‖K2‖K3 of fixed length (b + 2n) bits,
where |K2| = b and |K1| = |K3| = n. For security and practical reasons we set
a bound on the minimal and maximal message length λ, or n < λ < 2c where
typically c = 64 and c < n . The message is preprocessed with a standard MD

FFFF

K3

h�IV1

F

m�m�−1|msbb−n

m2|msbn ⊕ K1 (m� ⊕ K2)|msbn

m�−1|lsbn

...

K2

m4|msbnm3|msbn

m2m1 m3
...

K1

Fig. 1. The BCM Construction. The message M is MD strengthened. K1, K2 and
K3 are randomly chosen and fixed keys of length n, b and n bits, respectively.
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strengthening [12]. That is, a single 1 bit is appended to the message M followed
by as many zeros as needed and the binary encoding of |M | in 64 bits. We denote
the MD padding and strengthening function by pad and m1‖ . . . ‖m� ← pad(M),
such that |mi| = b for i = 1 to �.

The BCM F hash function can be described as follows. It XORs the key K1 and
the most significant n bits of block m2 with the fixed initial chaining variable IV1

(e.g. IV1 = 0n). The message block m1 together with the resulting value from
the XOR computation form the input to the first application of F. The current-
in-line message block mi and the chaining variable hi−1 XORed with the most
significant n bits of the next-in-line message block mi+1 are the following inputs
to the compression function F in the iteration for i = 1 to �− 2.

The one but last block is interpreted differently than the rest of the message
blocks. Here the difference is that the least significant n bits of m�−1 are XORed
with the key K1, while the chaining variable h�−2 is XORed with K2|msbn and
m�|msbn . The order of processing the inputs is preserved also in the (� − 1)st
block. The final input to the last compression function is provided by the last
message block m� and the chaining variable h�−1 XORed with keys K2 and K3,
respectively.

We describe our construction in pseudocode below (Alg. 1) and give a graph-
ical representation in Fig. 1.

Algorithm 1. BCM F(K, M):
m1‖ . . . ‖m� ← pad(M)
h0 = IV1, g1 = h0 ⊕K1 ⊕m2|msbn

h1 = F(m1, g1)
for i = 2 to �− 2 do

gi−1 = mi+1|msbn ⊕ hi−1

hi = F(mi, gi−1)
end for
g�−2 = (K2 ⊕m�)|msbn ⊕ h�−2

h�−1 = F(m�−1|msbb−n‖(m�−1|lsbn ⊕K1), g�−2)
h� = F(m� ⊕K2, h�−1 ⊕K3)
return h�

The BCM hash of a single strengthened message block m1 is computed as h1 =
F(m1 ⊕ K2, IV1 ⊕ K1 ⊕ K3). And when the message is two blocks long, then
h1 = F(m1|msbb−n‖m1|lsbn ⊕ K1, IV1 ⊕ K1 ⊕ (m2 ⊕K2)|msbn ) and the final output
hash is computed as h2 = F(m2 ⊕K2, h1 ⊕K3).

Efficiency. The BCM F hash mode is a streaming hashing mode that compared
to the known MD mode delays the processing with n bits in start-up time. Also
as in the MD hash function a single message block is processed per call to the
compression function F. Although we lack any concrete efficiency measurements,
we expect a small loss in efficiency (compared to MD) due to the constant storage
of extra n bits in memory.
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Discussion on the Design Choices.We choose to XOR IV1 with the key
K1 to provide additional randomization on the initialization value. The rest of
the XOR choices, namely XORing the chaining variables with the most signif-
icant n bits of the incoming message blocks provide the randomization on the
chaining values necessary for the Sec security preservation. Also, to achieve the
Sec security we have to disallow any fixed inputs introduced by the message
padding and strengthening. Hence, we XOR m�−1|lsbn and m� with the keys K1

and K2, respectively, and we additionally use the key K3 to randomize the fi-
nal chaining hash value h�−1. When F is modeled as a random oracle, the Pre
property of BCM F is easily satisfiable as long as the message has a minimal
length of n bits. An interesting observation is that none of the applied random-
ization techniques contributes for a Pre preservation in the standard security
model.

3.2 Possible Variants

We discuss modifications on the basic BCM construction with respect to the
order of input values to the compression function F. The variants include the
different chaining iterations on F, such that F takes as inputs any ordering of:
(A1 = m1|msbn , B1 = m1|lsbb−n, C1 = IV1 ⊕ K1 ⊕ m2|msbn ), (Ai = mi|msbn , Bi =
mi|lsbb−n, Ci = hi−1 ⊕ mi+1|msbn ) for i = 2 to � − 2, (A�−1 = m�−1|msbn , B�−1 =
m�−1|b−2n

n+1 ‖m�−1|b−n
b−2n+1 ⊕ K1, C�−1 = h�−2 ⊕ (m� ⊕K2)|msbn ) and finally

(A� = (m� ⊕K2)|msbn , B� = (m� ⊕K2)|lsbb−n, C� = h�−1 ⊕ K3). The indices de-
note the position of the input values in the iteration, e.g. (A1, B1, C1) forms the
set of input values to the first application of F. There are at most six permuted
input sets to F (per call to F). As long as the inputs in the final call to F are
ordered identically for messages of any arbitrary length, then the security prop-
erties of the basic BCM carry through to any chaining iteration that switches
the input wires to F in any chosen, but specified order.

Let S1
i = {Ai, Bi, Ci} for i = 1 to � be the sets containing the input values

to F of the same index i. We then define the sets Sj
i for j = 2 to 6 and i = 1

to � to be the rest of the possible orderings of the base set S1
j , or these are

S2
i = {Ai, Ci, Bi}, S3

i = {Ci, Ai, Bi}, S4
i = {Ci, Bi, Ai}, S5

i = {Bi, Ci, Ai} and
S6

i = {Bi, Ai, Ci}. Let P j
i : S1

i → Sj
i where j = 1 to 6 and i = 1 to �. With P a

i

we then denote any arbitrarily chosen mapping from S1
i to Sj

i for any j = 1 to
6 (i is a fixed input parameter), while P f stands for the final mapping from S1

�

to Sj
� for some randomly chosen and fixed j.

The GBCM hash of a 1-block message m1 is h1 = F(P a
1 (A1, B1, C1)) with

(A1 = (m1 ⊕K2)|msbn , B1 = (m1 ⊕K2)|lsbb−n, C1 = IV1 ⊕K1 ⊕K3).
The GBCM hash of a 2-block strengthened message is h2 = F(P f (A2, B2, C2))
for (A2 = (m2 ⊕K2)|msbn , B2 = (m2 ⊕K2)|lsbb−n, C2 = h1 ⊕K3) where h1 =
F(P a

1 (A1, B1, C1)) and (A1 = m1|msbn , B1 = m1|b−n
n+1‖m1|lsbn ⊕ K1, C1 = IV1 ⊕

K1 ⊕ (m2 ⊕K2)|msbn ).
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We then summarize the variants of BCM by exhibiting a generalized GBCM
construction and describe it in pseudocode in Algorithm 2.

Algorithm 2. GBCM F(K, M):
m1‖ . . . ‖m� ← pad(M)
h0 = IV1,
for i = 1 to �− 1 do

hi = F(P a
i (Ai, Bi, Ci))

end for
h� = F(P f (A�, B�, C�))
return h�

4 Property Preservation of the BCM (GBCM ) Construction

In this section we provide the full proofs for Coll and Sec security preservation in
the standard security model and we show Pre security of the BCM F construction
when the compression function is instantiated as a random oracle. We provide
the proofs of GBCM in the Appendix.

Theorem 1. If there exists an explicitly given adversary A that (t, ε)-breaks the
Coll security of BCM F (GBCM F), then there exists an explicitly given adversary
B that (t′, ε′)-breaks the Coll security of F for ε′ ≥ ε and t′ ≤ t + 2� · τF. Here,
τF is the time required for the evaluation of F and � = 
(λ + 65)/b� where λ is
the maximum message length of the two messages output by A.

Proof. Given a Coll adversary A against the iterated hash BCM F, we construct
a Coll adversary B against the compression function F. B generates at random a
key K

$← {0, 1}b+2n with K = K1‖K2‖K3 where |K1| = |K3| = n and |K2| = b.
B runs A on input K. Finally, A outputs a colliding pair of messages M and
M ′, such that BCM F(K, M) = BCM F(K, M ′). We investigate the following two
cases:

1. If |M | �= |M ′|, then the inputs to the last compression function differ (due
to the present message length encoding in m�) and therefore a collision on
the final F occurs, or m� ⊕K2 �= m′

�′ ⊕K2 where F(m� ⊕K2, h�−1 ⊕K3) =
F(m′

�′ ⊕K2, h
′
�′−1 ⊕K3). B then outputs (m� ⊕K2, h�−1 ⊕K3) and (m′

�′ ⊕
K2, h

′
�′−1 ⊕K3) as a valid colliding pair.

2. Else if |M | = |M ′|, then � = �′. If m�⊕K2‖h�−1⊕K3 �= m′
�⊕K2‖h′

�−1⊕K3,
then a collision occurs again in the last application of F. Else B proceeds in
the following way.
B parses the inputs to the (�−1)st application of F as (m�−1|msbb−n‖(m�−1|lsbn ⊕
K1), g�−2) and (m′

�−1|msbb−n‖(m′
�−1|lsbn ⊕K1), g′�−2). If these inputs differ, then

they constitute a valid collision pair for B, else g�−2 = g′�−2 and hence
h�−2 = h�−2 because of the previous equality for m� ⊕K2|msbn = m′

� ⊕K2|msbn .
Following the iteration principle B parses the previous inputs as m�−2‖g�−3

and m′
�−2‖g′�−3 and proceeds in the same manner backwards.
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The inequality of the message inputs M and M ′ guarantees the existence
of an index i > 0, such that mi‖gi−1 �= m′

i‖g′i−1 where F(mi‖gi−1) =
F(m′

i‖g′i−1). B outputs then the colliding pair (mi‖gi−1, m
′
i‖g′i−1) for the

max(i) satisfying the former statement.

Whenever A succeeds, then B also succeeds with the same advantage. The time
complexity of B is at most the time complexity of A plus two evaluations of
BCM F over messages M and M ′ taking time 2� · τF. 
�

Theorem 2. For atk = Sec, if the compression function F is (t′, ε′) atk secure,
then the iterated function BCM F (GBCM F) is (t, ε) atk secure for ε ≤ � · ε′
and t ≥ t′ − 2� · τF. Here, τF is the time required for the evaluation of F and
� = 
(λ + 65)/b� where λ is the maximum message length of the two messages
output by A.

Proof. Given a Sec[λ] adversary A against BCM F, we construct a Sec adversary
B against the compression function F. B receives a random challenge message
m‖h. For a randomly chosen index i the goal of the adversary B is to construct
a challenge message M and a key K, which have B’s challenge message m‖h
embedded, such that when A outputs its second preimage message M ′, then a
collision for M and M ′ can be found at the ith block of M . To simulate A’s
view correctly, however, B generates M and K, such that they are uniformly
distributed. The proof goes as follows.

B chooses a random index i
$← {1, . . . , � = 
(λ+65)/b�} and a random message

M of length λ. B has now to successfully embed his challenge m‖h at position i
in the target strengthened message m1‖ . . . ‖m� ← pad(M) and in the chaining
iterative portion of BCM F(K, M). Let M̂ = m1‖ . . . ‖m� be the strengthened
message M . Depending on the outcomes for i, B takes its decisions as follows:

1. If i = 1, then B sets m1 ← m and K1 ← IV1 ⊕ h ⊕ m2|msbn . Except block
m1, the rest of M̂ is unaltered. B chooses K2‖K3

$← {0, 1}b+n. Two special
cases arise in the case when λ < b− 65 or λ < 2b− 65. In the former case, B
proceeds as described below for i = �, and in the latter case as for i = �− 1.

2. If i ∈ {2, . . . , � − 2}, then B continues as follows. B sets mi ← m and
computes the intermediate chaining value hi−1 with K1

$← {0, 1}n. B sets
mi+1|msbn ← hi−1 ⊕ h. Then B chooses the keys K2‖K3 at random. Except
modifying blocks mi and mi+1|msbn , B leaves the rest of M̂ unaltered.

3. If i = �− 1, then B sets m�−1|msbb−n ← m|msbb−n and K1 ← (m�−1 ⊕m)|lsbn , and
computes the intermediate chaining value h�−2. h�−2 is set to IV1⊕K1 when
b− 65 ≤ λ < 2b− 65. B sets K2|msbn ← h�−2 ⊕ h⊕m�|msbn . Then B chooses at
random K2|lsbb−n‖K3

$← {0, 1}b. With the exception of m�−1|msbb−n, the rest of
M̂ remains unaltered.

4. If i = �, then B chooses at random K1
$← {0, 1}n and computes the inter-

mediate hash value h�−1. Note that if λ < b− 65, then the chaining value is
computed as IV1 ⊕K1. B then sets K3 ← h⊕ h�−1 and K2 ← m⊕m�. M̂
remains unchanged.
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After m‖h is successfully embedded, B proceeds by running A on inputs message
M where M = pad−1(M̂)(the non-strengthened version of M̂ with the applied
modifications) and key K = K1‖K2‖K3. Note that both M and K are uniformly
distributed. Initially B chooses uniformly at random M and then modifies some
of its blocks as prescribed in the former cases. However, the modified blocks
of M are assigned only independent random values. Hence, the resulting final
challenge message M is also uniformly distributed. The key K is constructed in
a similar way.

On inputs M and K A returns a second preimage message M ′, such that
BCM F(K, M) = BCM F(K, M ′). For the rest of the proof B acts identically as
in the Coll proof. With probability 1/� B finds the colliding pair at the correct
position i (at which B embedded m‖h) and outputs the colliding inputs for F as
its valid second preimage. If A succeeds with advantage ε, then B also succeeds
with advantage ε/�. The time complexity of B is at most the time complexity of
A plus two evaluations of BCM F. This completes the proof. 
�
Theorem 3. If the compression function F is instantiated as a random oracle,
then the iterated function BCM F (GBCM F) is (qRO, ε) Pre[λ] secure where ε ≤
qRO/2n and qRO is the number of queries to the random oracle.

Proof. Let A be a Pre[λ] adversary on the iterated hash function BCM F. Given
a challenge hash value Y and key K = K1‖K2‖K3, the goal of A is to invert
Y , which is computed as Y = BCM F(K, M) for a randomly chosen message
M

$← {0, 1}λ and a key K
$← K.

We investigate the following two cases: 1. n < λ ≤ b−65 and 2. λ > b−65. In
the first case Y = F(m1⊕K2, IV1⊕K1⊕K3). The adversary A knows the message
length, respectively the applied strengthening bits, the fixed IV1 value and the
random key values K1‖K2‖K3. However, A has no information of at least n bits
of the message input m1. Thus, the only way to find a valid preimage message
for BCM F is to exhaustively query the random oracle F on chosen inputs for the
missing part of m1. The probability to find the correct preimage message per
single query is 1/2n and after qRO queries to the random oracle A succeeds to
invert Y with probability qRO/2n.

In the second case Y = F(m� ⊕ K2, h�−1 ⊕K3). Here A knows the keys K2

and K3, the message length λ and the respective strengthening bits used in the
last message block m�. Still, B does not know the intermediate chaining value
h�−1. Again as in the former case, A needs to invert Y and its success ε is bound
by qRO/2n. 
�
A Pre Counterexample in the Standard Model. Surprisingly, the pre-
sented BCM F does not provide Pre property preservation when the compression
function is a Pre secure hash and not modeled as a random oracle. Here we
provide a counterexample compression function, which is Pre secure as long as
the underlying compressing function is also Pre secure.

Let F be defined as F(m‖h) = CE1(m). If CE1 : {0, 1}b → {0, 1}n is (t′, ε′)
Pre secure compressing function, then F is also (t, ε) Pre secure function with
ε ≤ ε′ and t ≥ t′.
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A Pre[λ] adversary A on the iterated hash function BCM F succeeds in constant
time with probability one in breaking the Pre[λ] security. A is given a challenge
hash value Y = BCM F(M, K) for a random M

$← {0, 1}λ and a random key
K ← K with K = K1‖K2‖K3. A succeeds by outputting any message M ′ of
length λ, because all these messages result in Y = F(m� ⊕ K2, h�−1 ⊕ K3) =
CE1(m� ⊕ K2). Here we made an assumption that λ is such that m� consists
only of padding and strengthening bits.

4.1 Second Preimage Attacks Beyond 2n−�

From [11] and [1] we know that earlier Merkle-Damg̊ard based constructions
are prone to Sec attacks in a bit more that 2n−� compression function calls
when the target messages are of size 2� blocks. The latter attacks apply to our
scheme given that the target messages are of a specific format. Let the challenge
messages be parsed as a sequence of b-bit blocks. When these contain fixed and
predictable message chunks in their n most significant bits (e.g. mi|msbn = 0n),
the mentioned attacks can be mounted on our hash construction. But even then
the attacks are in no contradiction with our claimed Sec security result. In our
Sec security proof we loose a factor of � (number of message blocks), while the
attacks are valid in the estimated security gap (between the exhibited 2n−� and
the ideal 2n Sec security).

To build either an expandable message or a diamond structure used in the
attacks, an adversary searches for collisions on F. These are possible by going
over different values only in the least significant (b−n) bits of the message blocks
chosen by the adversary. The adversary then commits to an intermediate hash
value hi. Next, in both the expandable message attack [11] and the diamond
structure [1] second preimage attacks, the adversary has to connect from hi to a
chaining value in the target message M . Here the requirement for a specific mes-
sage format comes into play. If the message blocks differ in their most significant
n bits, the adversary’s probability to connect correctly is small. That is because
he has to have predicted in advance mj |msbn , given that he successfully connects
to a chaining value hj . The best adversarial strategy here is to exploit message
blocks repetitions in their most significant n bits. Then if all these are equal,
the attacks become feasible in approximately 2n−� steps (compression function
calls).

One way to fully block this type of attacks is to XOR the chaining values
with the output of a function f that takes as input the complete forth-coming
message block of b bits. In the iteration we would replace the mi|msbn with f(mi)
for all i = 1 to �. To achieve the property preservation the function f has to be
instantiated as a random oracle, which turns the suggested scheme into a less
efficient variant (linear number of calls to RO) of the ROX [2] hash.

5 Security Discussion or Where Theory Meets Practice

Our scheme preserves the Coll security of the compression function F due to the
MD strengthening and achieves the 2n/2 security level if F is an ideal function.
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The Sec security property is preserved through the randomization of the final
inputs of F with keys K2 and K3, and the intermediate hash values with parts
of the message blocks.

Notice that the standard Sec definition we use for the latter result assumes
the uniform distribution U on the message space M. This allows us to extract
randomness from the challenge messages, rather than adding extra key material
(e.g. log number of keys in Shoup’s hash). Where is the caveat here? When the
messages are not sufficiently random, the BCM hash scheme does not reach the
claimed Sec security level. More precisely, we do not need the randomness from
the whole message source but we extract it only from the n most significant bits of
every b-bit chunk of message. Then messages without sufficient entropy in those
most significant bits can introduce Sec weaknesses in our scheme, as we show.
Non-uniform distributions that allow for such attacks are some concrete distri-
butions of messages with low entropy. Next we exhibit such a counterexample.

The Low Entropy Messages Counterexample. In our counterexample we
construct a contrived Sec secure compression function and specify the format of
the messages that occur with the highest probability according the challenge
messages distribution.

Let the challenge message spaceMDl be assigned the distribution Dl. Here we
defineMDl = {0, 1}λ where λ > 2b−65. According to Dl for any mi|lsbn with i =
2 to � (� = 
(λ)/b�) the messages m1‖0n‖m2|lsbb−n‖ . . . ‖0n‖m�|lsbb−n appear with
high probability (1− ε′) while all the rest of the messages occur with negligible
probability ε′. The most frequent challenge messages contain n bits of 0s in
the most significant bits of their b-bit blocks. The counterexample compression
function we use is similar to the one from Theorem 3.2 [2].

Theorem 4. If there exists a (t, ε) Sec secure function G : {0, 1}b+n →
{0, 1}n−1, then there exists a (t, ε − 1/2n−1) Sec secure compression function
CE2 : {0, 1}b+n → {0, 1}n and an adversary A running in constant time with
Sec[λ, Dl]-advantage (1 − ε′) in breaking BCM CE2 for any challenge message
M ∈MDl chosen according to the distribution Dl.

Note that we additionally parameterize the adversarial advantage by the message
space distribution Dl and that ε′ is the probability for messages different from
the specified format to be chosen fromMDl .

Proof. Our CE2 is given by

CE2(m‖h) = 0n if h = 0n or m|msbn = 0n

= G(m‖h) ‖ 1 otherwise .

If G is (t, ε) Sec secure, then CE2 is (t, ε − 1/2n−1) Sec secure; we refer to the
full version [3] for the proof.
According to the distribution Dl the messages of the specified format are chosen
with high probability (1 − ε′) as target messages. Then for any random key
K

$← {0, 1}b+2n and target message M = m1‖0n‖m2|lsbb−n‖ . . . ‖0n‖m�|lsbb−n, a
Sec[λ, Dl] adversary A finds a second preimage message M ′, such that |M | = |M ′|
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and M ′ is of the same format as M . Let M ′ differ from M only in the least
significant (b − n) bits of their second blocks. Then the chaining values in the
computation of M and M ′ are equal immediately after the second application
of CE2. For any λ > 2b − 65 the chaining value 0n is propagated further in the
chain. Finally BCM CE2(K, M) = BCM CE2(K, M ′). 
�
We admit that this is a particularly contrived counterexample for a low entropy
message distribution. The minimal requirement on the message structure with
this type of counterexample compression functions is a repetition in the most
significant n bits of two adjacent b-bit message blocks. Such counterexamples
are especially problematic for low entropy message distributions and are also
valid for high entropy message distributions. However, in the latter case, the
probability for such challenge messages to be chosen is not high on average and
we cannot exhibit an efficient Sec adversary.

6 Concluding Discussion

In our opinion the Sec security preservation is one of the hardest security no-
tions to satisfy in an iterative hash mode. At the cost of a logarithmic number
of keys to randomize the chaining values and an additional constant b-bit key
to randomize the message blocks, Shoup’s hash [17] could be modified to also
achieve Sec preservation in the standard model. Notice, however, that once the
keys are fixed, we can always identify non-uniform distributions for which con-
trived counterexamples are possible (even if we increase the fixed keys for the
randomization of the message blocks from a constant to linear in the message
length). One way to avoid this problem is to introduce randomization per mes-
sage, known also as salting. It is therefore an interesting question to identify
the conditions that such a message randomization transform needs to satisfy in
order to provide Sec preservation for any target message distribution.

On the other hand, the question of correctly formalizing and satisfying Sec
security properties that take into account biased challenge message distributions
may be practically relevant. Practical message distributions that deviate from
uniform allow for predictability of certain target messages and in our view are a
shift from the Sec to the known target collision resistance (TCR/UOWH/eSec)
property. Another interesting problem may then be to find ways to achieve Sec
security for any message distribution with an efficient hash construction that
uses a minimal amount of key material. In our view, one possible way to go
around this problem is to correctly identify new assumptions on the compression
function.
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A GBCM Proofs

A.1 Coll Proof of Theorem 1 for GBCM

Given a Coll adversary A against GBCM F, we construct a Coll adversary B

against the compression function F. B generates at random a key K
$← {0, 1}b+2n

with K = K1‖K2‖K3 where |K1| = |K3| = n and |K2| = b. B runs A on
input K. Finally, A outputs a colliding pair of messages M and M ′, such that
BCM F(K, M) = BCM F(K, M ′). We investigate the following two cases:

1. If |M | �= |M ′|, then the inputs to the last compression function differ (due to
the present message length encoding in m�) and therefore a collision on the
final F occurs, or P f (A�, B�, C�) �= P f (A′

�, B
′
�, C

′
�). Note that the transfor-

mation P f is fixed and identical for messages of arbitrary length. Therefore,
a difference in blocks B� and B�′ (induced by the applied strengthening)
results in difference in the outputs of P f on the same input wires for F. B
outputs P f (A�, B�, C�), P f (A′

�, B
′
�, C

′
�) as a valid colliding pair.

2. Else if |M | = |M ′|, then � = �′ and the processing of M and M ′ is symmetric
with respect to the inputs of F (the same arbitrary P a

j for j = 1 to �− 1 is
applied at all positions j for both M and M ′). Here B proceeds by search-
ing backwards (block-by-block) for distinct F inputs P a

j (Aj , Bj , Cj) and
P a

j (A′
j , B

′
j, C

′
j), which result in equal output hash values hj an h′

j under F.
Since M �= M ′, then there exists an index j > 0, such that P a

j (Aj , Bj , Cj) �=
P a

j (A′
j , B

′
j, C

′
j). Then for the max(j) that satisfies the inequality, B outputs

the corresponding colliding pair (P a
j (Aj , Bj , Cj), P a

j (A′
j , B

′
j , C

′
j)). 
�

A.2 Sec Proof of Theorem 2 for GBCM

Given a Sec[λ] adversary A against GBCM F, we construct a Sec adversary B
against the compression function F. B receives a random challenge message m‖h.
Then B chooses a random index i

$← {1, . . . , � = 
(λ + 65)/b�} and a random
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message M
$← {0, 1}λ. B has to successfully embed his challenge m‖h in the

target strengthened message m1‖ . . . ‖m� ← pad(M) and in the chaining iterative
portion of GBCM F(K, M). Let M̂ = m1‖ . . . ‖m� be the strengthened message.

Let (Xi, Yi, Zi) ← P a
i (Ai, Bi, Ci) for i = 1 to � − 1 and (X�, Y�, Z�) ←

P f (A�, B�, C�). Then B identifies the type of mapping applied in the respec-
tive ith position in the iteration for i = 1 to �− 1

1. if P a
i = P 1

i , then Xi‖Yi = m and Zi = h.
2. if P a

i = P 2
i , then Xi‖Zi = m and Yi = h.

3. if P a
i = P 3

i , then Yi‖Zi = m and Xi = h.
4. if P a

i = P 4
i , then Zi‖Yi = m and Xi = h.

5. if P a
i = P 5

i , then Zi‖Xi = m and Yi = h.
6. if P a

i = P 6
i , then Yi‖Xi = m and Zi = h.

Now if i = 1, then a value that equals to h translates to B setting K1 ←
IV1 ⊕ h⊕m2|msbn . If λ < b− 65, then B proceeds as in case i = �.

If i ∈ {2 . . . �−2}, then equality to h translates to B setting mi+1|msbn ← hi−1⊕h

for a randomly chosen K1
$← {0, 1}n (hi−1 is the (i− 1)st intermediate chaining

value computed by B). If λ < 2b− 65, then B proceeds as in case i = �− 1.
In both these cases B modifies either block m1, or blocks mi and mi+1|msbn

from the message M̂ . B also chooses at random K2‖K3
$← {0, 1}b+n.

If i = � − 1, then equality of a value to m is equivalent to B setting the
most significant b − n bits of it to m|msbb−n and K1 ← (m⊕m�−1)|lsbn . Equality
to h here means that B sets K2|msbn ← h⊕ h�−2 ⊕m�|msbn (h�−2 is the (�− 2)nd
intermediate chaining value computed by B when λ ≥ 2b − 65 and IV1 ⊕ K1

when b − 65 ≤ λ < 2b − 65). A chooses K2|lsbb−n‖K3
$← {0, 1}n. Only the first

b− n bits of block m�−1 are modified from the originally generated message M̂ .
If i = �, then

1. if P f = P 1, then X�‖Y� = m and Z� = h.
2. if P f = P 2, then X�‖Z� = m and Y� = h.
3. if P f = P 3, then Y�‖Z� = m and X� = h.
4. if P f = P 4, then Z�‖Y� = m and X� = h.
5. if P f = P 5, then Z�‖X� = m and Y� = h.
6. if P f = P 6, then Y�‖X� = m and Z� = h.

B chooses at random K1
$← {0, 1}n and computes the intermediate hash value

h�−1. An equality to m means that B then sets K2 ← m⊕m� and equality to h
that K3 ← h⊕h�−1 (h�−1 is the (�− 1)st intermediate chaining value computed
by B when λ ≥ b − 65 and IV1 ⊕K1 when λ < b − 65). Except m�, the rest of
M̂ remains unchanged.

Now m‖h is successfully embedded and B proceeds by running A on inputs
message M where M = pad−1(M̂)(the non-strengthened version of M̂) and
key K = K1‖K2‖K3. As in the case of BCM hash, the message M and key K
are uniformly distributed. A returns a second preimage message M ′, such that
BCM F(K, M) = BCM F(K, M ′). For the rest of the proof B acts identically as
in the Coll proof. With probability 1/� B finds the colliding pair at the correct
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position i (at which B embedded m‖h) and outputs the colliding inputs for F as
its valid second preimage. This completes the proof. 
�

A.3 Pre Proof of Theorem 3 for GBCM

Proof. Let A be a Pre[λ] adversary on the iterated hash function GBCM F. Given
a challenge hash value Y and key K = K1‖K2‖K3, the goal of A is to invert
Y , which is computed as Y = GBCM F(K, M) for a randomly chosen message
M

$← {0, 1}λ and a random key K
$← K.

We investigate the following two cases: 1. n < λ ≤ b − 65 and 2. λ > b − 65.
In the first case Y = F(P f (A1, B1, C1)). A knows λ, respectively the applied
strengthening bits, IV1 and K1‖K2‖K3. Thus, A knows at most the input B1

and C1 and can derive at most b − n bits from the output of P f . However, A
has no information on at least n bits of the message input A1 = m1. Thus, the
only way to find a valid preimage message for BCM F is to exhaustively query the
random oracle F on chosen inputs for the missing part of m1. The probability
to find the correct preimage message per single query is 1/2n and therefore after
qRO queries to the random oracle A succeeds to invert Y with probability qRO/2n.

In the second case Y = F(P f (A�, B�, C�)). Here A knows the keys K2 and
K3, the message length λ and the respective strengthening bits used in the last
message block m�. A can compute at most b−n bits of P f (A�, B�, C�). But again
B does not know the intermediate chaining value h�−1 and also C� = h�−1⊕K3,
then again as in case one, A can at best try to invert Y . A’a success ε is bound
by qRO/2n. 
�
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