Skip to main content

Ground Interpolation for Combined Theories

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5663))

Abstract

We give a method for modular generation of ground interpolants in modern SMT solvers supporting multiple theories. Our method uses a novel algorithm to modify the proof tree obtained from an unsatifiability run of the solver into a proof tree without occurrences of troublesome “uncolorable” literals. An interpolant can then be readily generated using existing procedures. The principal advantage of our method is that it places few restrictions (none for convex theories) on the search strategy of the solver. Consequently, it is straightforward to implement and enables more efficient interpolating SMT solvers. In the presence of non-convex theories our method is incomplete, but still more general than previous methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, P.B.: Resolution with merging. J. ACM 15(3), 367–381 (1968)

    Article  MATH  Google Scholar 

  2. Barrett, C., et al.: Satisfiability Modulo Theories. In: Biere, A., et al. (eds.) Handbook of Satisfiability, pp. 825–885. IOS Press, Amsterdam (2009)

    Google Scholar 

  3. Beyer, D., Zufferey, D., Majumdar, R.: CSIsat: Interpolation for LA+EUF. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 304–308. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Bozzano, M., et al.: Efficient theory combination via Boolean search. Information and Computation 204(10), 1493–1525 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Büning, H.K., Lettmann, T.: Propositional Logic: Deduction and Algorithms. Cambridge University Press, New York (1999)

    MATH  Google Scholar 

  6. Cimatti, A., Griggio, A., Sebastiani, R.: Efficient interpolant generation in Satisfiability Modulo Theories. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 397–412. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. de Moura, L., Bjørner, N.: Model-based theory combination. ENTCS 198, 37–49 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Fuchs, A., et al.: Ground interpolation for the theory of equality. In: TACAS. LNCS, vol. 5505, pp. 413–427. Springer, Heidelberg (2009)

    Google Scholar 

  10. Henzinger, T.A., et al.: Abstractions from proofs. In: POPL, pp. 232–244. ACM, New York (2004)

    Google Scholar 

  11. Jhala, R., McMillan, K.L.: Interpolant-based transition relation approximation. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 39–51. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Krstić, S., Goel, A.: Architecting solvers for SAT Modulo Theories: Nelson-Oppen with DPLL. In: Konev, B., Wolter, F. (eds.) FroCos 2007. LNCS, vol. 4720, pp. 1–27. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  14. McMillan, K.L.: An interpolating theorem prover. Theoretical Computer Science 345(1), 101–121 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Abstract DPLL and abstract DPLL modulo theories. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS, vol. 3452, pp. 36–50. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  17. Rybalchenko, A., Sofronie-Stokkermans, V.: Constraint solving for interpolation. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 346–362. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  18. Yorsh, G., Musuvathi, M.: A combination method for generating interpolants. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS, vol. 3632, pp. 353–368. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goel, A., Krstić, S., Tinelli, C. (2009). Ground Interpolation for Combined Theories. In: Schmidt, R.A. (eds) Automated Deduction – CADE-22. CADE 2009. Lecture Notes in Computer Science(), vol 5663. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02959-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02959-2_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02958-5

  • Online ISBN: 978-3-642-02959-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics