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Abstract. The aim of this paper is to introduce a new model of a financial asset 
prices distribution. It is known that the probability distribution of an asset prices 
or returns is unknown in reality.  The general model of asset prices based on 
continuous time Markov chains is proposed. For this reason the interarrivals be-
tween two price states are approximated by mixture of exponential distribu-
tions.  Numerical-analytic approach is used to obtain the probability distribution 
of asset prices. The developed software allows creating the space of an asset 
prices, the matrix of transition rates among states, a system of equations to find 
the steady state probabilities of price states and solves the system of equations 
by method of imbedded Markov chains. 

Keywords: Asset prices distribution, a mixture of exponential distributions, 
continuous time Markov chain, and numerical-analytic model. 

1   Introduction  

It should be noted that, in practice, we do not observe asset prices following continu-
ous-variable, continuous-time processes. For example, stock prices are restricted to 
discrete values and changes can be observed only when exchange is open. Neverthe-
less, the discrete-variable and continuous-time process proves to be useful model for 
stock prices.  

To price and hedge derivative securities, it is crucial to have a good model of the 
probability distribution of the underlying product. The most famous continuous time 
model is the celebrated Black - Scholes model [1] and discrete one is classical Cox-
Rubinstein model [2], which uses the normal distribution to fit the log returns of the 
underlying asset. One of the main problems with these models is that the data suggest 
that the log returns of stocks are not normally distributed. So other more flexible dis-
tributions are needed. Some authors suggest the underlying normal distribution to 
replace by a more sophisticated one. Examples of such, which can take into account 
skewness, excess kurtosis and other features, are the Variance Gamma [3], the Nor-
mal Inverse Gaussian [4], the CGMY (named after Carr, Geman, Madan and Yor) [5], 
the Hyperbolic Model [6]  and the Meixner [7] distribution. Including such features 
makes analytic modelling less tractable, and potentially makes numerical modelling a 
more attractive alternative. In the following sections the algorithm of modeling asset 
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prices by Markov chains is proposed. Armed with the model of price dynamics, an 
investor can: 

• Calculate theoretical prices for derivative securities 
• Measure the amount of risk associated with holding risky securities. 

2   Markov Property of Stock Prices  

The dynamics of asset prices are reflected by uncertain movements of their values 
over time. Some authors [8, 9] state that Efficient Market Hypothesis (EMH) is one 
possible reason for the random behaviour of the asset price. The EMH basically states 
that past history is fully reflected in present prices and markets respond immediately 
to new information about the asset. 

A Markov process is a particular type of stochastic process where only the present 
value of a variable is relevant for predicting the future. The past history of the vari-
ables and the way that that the present has emerged from the past are irrelevant. 

Stock prices are usually assumed to follow a Markov process. These processes are 
important models of security prices, because they are often realistic representation of 
true prices and yet the Markov property leads to simplified computations. If the stock 
price follows a Markov process, our predictions of the future should be unaffected by 
the price one week ago, one month ago, or one year ago. The only relevant piece of 
information is the price now. Predictions are uncertain and must be expressed in terms 
of probability distributions. The Markov property implies that the probability distribu-
tion of the price at any particular future time is not dependent on the particular path 
followed by the price in the past. 

If stock price process { }TtSS t ≤≤= 0, is Markovian and if we denote by 

{ }TtFF t ≤≤= 0, the natural filtration of S (intuitively, tF contains all market in-

formation up to time t), then we can write for a well-behaved function f: 
])([]([ ) tTtT SSfEFSfE = . The stock price process takes values in some countable 

set E, called the state space. If EjSt ∈= , we shall say ”the process is in state j at 

time t”. The most common situation is for the state to be a scalar, but frequently it is 
more convenient for the state to be a vector. 

3   Approximation of the Probability Distribution of Stock Prices  

Our aim is to construct the stock price dynamics as a continuous time Markov chain 
with countable space of states. To find the space of states and transition rates between 
them we have to construct price movement distributions up and down for a given stock. 
To get Markov process the distribution of time length of stock price rising or decreasing 
must be exponential with parameter μ.  Unfortunately, usually it is insufficient, and then 
a convenient representation for more general distributions is the Coxian formulation [8]. 
This formulation, by means of fictitious phases, allows the duration of generating stock 
price rate of transition up or down to be described by a linear combination of stochastic 
variables. Thus, generation of price movement is a continuous succession of k phases, 
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each having exponential service time distribution of rate kjj ,,2,1, =μ . After phase j, 

a stock price leaves the phases with probability ( jp−1 ). The stock price can occupy 

only one phase at a time. Therefore, there can be at most one stock price within the set 
of phases at any time.  

Let us consider a general probability distribution function G(t) of stock prices. 
Useful approximation of this function can be obtained by the mixture and convolu-
tions of exponential (phase-type) distributions. Then a Markov chain with a countable 
space of states and continuous time can represent the evolution of stock price dynam-

ics. Suppose we let 3,1, =kmk  denotes the kth non-central moment, i.e. E [ kX ], 

where X is a random variable of price movement time. Construct a random variable X, 
which can be represented as: 
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where ,2,1, =iX i  are independent random variables having exponential distribu-

tions with means 1/1 μ  and 2/1 μ   respectively;  121 =+ pp . The random variable 

X equals to the sum of independent variables with random number N of summands. N 
is non-negative, integer-valued random variable with E (N) < ∞ having geometrical 
distribution. Its probability density is the following  
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Moment matching is a common method for approximating distributions. Though 
two-moment approximations are common, they may lead to serious error when the 
coefficient of variation ν, (the standard deviation divided by the mean) is high. The 
first three moments of any non degenerate distribution with support on [0,∞) can be 
matched by the distribution (2).  

To obtain the values of the parameters ,, 21 μμ  1p  and 2p  of approximation, a 

complex system of non-linear equations needs to be solved: 
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The solution of the system is the following: 
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The exponential stages are shown graphically in Fig.1. 
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Fig 1. The diagram of two exponential phases 

4   Calculation of Steady State Distribution of Markov Chain  

In constructing the approximating Markov chain, three decisions need to be made. 
First, one must choose the set of discrete prices, i.e. },...,,{ 10 nSSSS = . The second 

decision is generating the transition rates among states, and the third - calculating 
steady state distribution of asset prices.  

In this section we will use so called the event language to generate the space of 
stock prices and transition matrix between them. Denote the time elapsed between 
two consecutive time observations by ,...2,1,1 =−=Δ − iYYY ii  

We approximate the distributions of price movement time up and down from the 
historical data of selected stock prices by the formulas respectively 
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A Markov chain with the countable space of states and continuous time can de-
scribe the dynamics of stock price movement. To construct a numerical model of the 
system, the approach proposed in  will be applied. 

The set of events in the system: 

},,,,,,,{ 43214321
dddduuuu eeeeeeeeE =  
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where  
)(

1
due – beginning of price movement up (down); 

)(
2

due  – completed the stage of price movement up (down) with probability )(
1

dup   

     in the first phase; 
)(

3
due – completed the stage of price movement up (down) with probability )(

2
dup in  

     the first phase; 
)(

4
due – completed the stage of price movement up (down) in the second phase; 

The set of transition rates: 
},,,{ 221221

ddduuu ppIntens μμμμ= , 

where 
)(

1
duμ -  rate of price movement up (down) in the first phase; 

)(
2

)(
1

dudu pμ -   rate of price movement up (down) in the second phase; 

Let us consider an asset observed on a discrete time scale { } ∞<TTt ,,,,,1,0  

having tS  as market stock value at time t. To model the stochastic process 

( )TtSt ,,1,0, =  we suppose that the asset has known minimal and maximal values so 

that the set of all possible values is the closed interval [ ]maxmin , SS . For example, if 0S  

is the value of the asset at time 0, we can put  
 

2/)( minmax0 SSS +=  

NkkSS k ,,1,0 =Δ+=  

NkkSS k .,1,0 =Δ−=−  

NSS 2/)( minmax −=Δ  
 

N being chosen arbitrarily. This implies the total number of states is 2n + 1. In what 
follows, we order these states in the naturally increasing order and use the following 
notation for the state space:  

},,1,0,),1(,{ NNNI −−−= . 

We can also introduce different step lengths following movements up and down and 
so consider respectively Δ′Δ, . It is also possible to let ∞→maxS  and  ∞→T  particu-

larly to get good approximation results. 
To model the dynamics of stock prices we need know the phase in which is the 

stock price. The state space of the system is completely specified by the set of triples 

( ){ },,, 321 bbbB = Ib ∈1 , 
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The dynamics of stock price movement can be described in the event language. As 
an example, the description of the fourth event using pseudo code is represented bellow.  
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end if 

end ue2  
 

The software for automatic construction of numerical models is created [9]. The 
software consists of: 

• The language of a model specification 
• A program for automatic generation of all possible states ( the set of stock 

prices) and transition rates among them 
•  A program for calculation of steady state probabilities of continuous 

Markov chain. 

The states of Markov process are generated from an initial state. All possible transi-
tions from this state are considered. When this step is completed, the current state is 
marked, and one of the newly obtained states becomes the current state. The genera-
tion process terminates when all the states in the list have been marked and no new 
state is obtained. Let ( )( )

NN
N
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λ=Λ  be the matrix of transition rates for a Markov 

chain on the set of states { }NSSS ,,0 …= . Then  
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The probabilities of stock price states are calculated by the following formula:  

( )∑ −==
32 ,

32 ,,,,,)(
bb

NNkbbkqkp , 

where  ( )32 ,, bbkq  is the probability of the  price at the fixed phase.  

5   Numerical Example 

This section discusses the actual implementation of the model’s methodology dis-
cussed in the previous sections.  

Data used in the analyses is the Microsoft Corporation daily log-returns which start 
from February 2007 and end in May 2007. The statistical analysis showed that the 
skewness is negative and the kurtosis is higher than three, it can be said that the Mi-
crosoft Corporation log-returns in the sample period are not drawn the unique normal 
distribution. Thus it would be challenging to apply numerical-analytic method. 

From the observed data we can assume that 24,15S 28,10, minmax ==S . The analy-

sis of the data showed that the average daily change of price is 0,21=Δ . So the state 
space is consisted of 22 elements. Statistical evaluations of non-central moments of 
the stock prices moving up and down are the following:  
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Corresponding parameters of approximating density function are calculated ac-
cording to formulas given in section 3. The parameters are the following: 

0,0088;p  0,3358; 0,5381;

0,2373;p  1,2384;  0,4014;
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The dynamics of stock price movements was described in the event language pre-
sented in section 4. The developed software using the description as input data auto-
matically generates all the possible states (the set of stock prices) and transition rates 
among them, calculates steady state probabilities of asset prices. The calculated prob-
ability distribution is given in the Table 1. 

Table 1. Probability distribution of asset prices 

State  24,15 24,36 24,57 24,78 24,99 25,2 25,41 
Probability 0,0015 0,0017 0.0018 0.0018 0.028 0.0042 0.0079

 
State  25,41 25,62 25,83 26,04 26,25 26,46 26,67 
Probability 0.0079 0.0154 0.0324 0.1609 0.1516 0.1187 0.1002

 
State  26,88 27,09 27,30 27,51 27,72 27,93 28,10 
Probability 0.0860 0.0732 0.0613 0.0523 0.0453 0.0387 0.0423
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The distribution can be used for evaluation of statistical measures of the stock 
prices and pricing derivative securities. 

6   Conclusion 

This paper gives a continuous time Markov chain model for asset dynamics. It allows 
solving of a large size problem. The model can be applied for pricing of option finan-
cial products working in continuous time and with countable number of possible val-
ues for the imbedded asset, which is always the case from the numerical point of 
view. The main interest of this model is that it works even when there are possibilities 
of arbitrage, i.e. the most frequent cases. Further research will be devoted for deter-
mining the risk neutral measure and pricing derivative securities based on the con-
tinuous time Markov chain model. 
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