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Abstract. This paper proposes an ex-post comparison of portfolio selection 
strategies based on the assumption that the portfolio returns evolve as Markov 
processes. Thus we propose the comparison of the ex-post final wealth obtained 
with the maximization of the expected negative exponential utility and expected 
power utility for different risk aversion parameters. In particular, we consider 
strategies where the investors recalibrate their portfolios at a fixed temporal ho-
rizon and we compare the wealth obtained either under the assumption that re-
turns follow a Markov chain or under the assumption we have independent 
identically distributed data. Thus, we implement an heuristic algorithm for the 
global optimum in order to overcome the intrinsic computational complexity of 
the proposed Markovian models.  
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1   Introduction 

In this paper, we model the return portfolios with a Markov chain. Under this distribu-
tional hypothesis we compare expected utility portfolio strategies with the assumption 
that returns are independent identically distributed. 

The Markovian hypothesis have been widely used in financial modeling. In par-
ticular, in option theory, portfolio theory and risk management theory most of the 
parametric processes used are Markov processes (for portfolio models see, among 
others, Staino et al. (2007), Rachev et al. (2007), for option pricing models see, 
among others, Cox et al. (1979), De Giovanni et al. (2008), Iaquinta and Ortobelli 
(2008), for risk management models see, among others, Longerstaey and Zangari 
(1996), Lamantia et al. (2006b). In addition, using the methodology proposed by 
Christoffersen (1998) we can easily show that the Markovian hypothesis of asset 
returns cannot be rejected (see Lamantia et al. (2006a)). However, even if most of the 
parametric processes used in financial applications are Markov processes, only re-
cently it has been shown that we can easily maximize inter-temporal performance 
measures assuming return portfolios following a Markov chain (see Angelelli and 
Ortobelli (2008)). In this paper we first propose some algorithms that reduce the com-
plexity of the portfolio selection problems based on the Markovianity of the gross 
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returns. In particular, we use the method discussed by Iaquinta and Ortobelli (2006) 
for non parametric Markovian processes where the transition matrix depends directly 
on the portfolio weights. This algorithm permits to predict future asset returns and 
their distributions in polynomial computational times. However, the dependence on 
the portfolio weights of the transition matrix implies that the computational complex-
ity of these portfolio problems is much higher than assuming that historical observa-
tions of returns are independent identically distributed. As a matter of fact, if we use 
classic methods for global optimum (such as simulated annealing type algorithms see 
Leccadito et al. (2007)) we cannot solve these problems in reasonable computational 
times. In order to reduce the computational complexity of these portfolio selection 
strategies, we use the optimization heuristic proposed by Angelelli and Ortobelli 
(2008). That algorithm permits to check the n-dimensional simplex to approximate 
the global optimum. Secondly, we propose an empirical comparison among portfolio 
selection strategies based on the optimization of expected utility of future wealth. We 
use the negative exponential utility and the power utility with different degrees of risk 
aversion. We propose an ex-post analysis where we compare the sample path of 
wealth obtained assuming that the investors recalibrate their portfolios at a fixed tem-
poral horizon. Since any of these portfolio strategies is based on the estimation of the 
distribution of the returns at future times, we get a substantial difference when portfo-
lio selection strategies are developed using the Markovian assumption respect to those 
based on the assumption that returns are independent identically distributed. So, when 
we apply Markovian strategies on twenty components of the Dow Jones Industrials, 
we show that we always get higher returns with respect to returns obtained by means 
of classic strategies.  

The paper is organized as follows. In Section 2 we show how to model non para-
metric Markov chains and we formalize the maximum expected utility problem with 
Markov chains. In Section 3 we discuss the ex-post empirical comparison. In the last 
Section, we briefly summarize the paper. 

2   Maximum Expected Utility with Non Parametric Markov 
Processes 

In this section we deal the portfolio selection problem among n risky assets with gross 
returns 1 1, 1 , 1[ , , ]t t n tz z z+ + + ′= …  assuming that the portfolio process is described by a 

homogeneous Markov chain with N states. In particular, we assume that investors 
want to maximize their utility of wealth at a given future date T. We denote by 

1[ , , ]nx x x ′= …    the vector of the positions taken in the n risky assets, then the portfo-

lio return during the period [t, t+1] is given by ( ), 1 1 , 1
1

n

x t t i i t
i

z x z x z+ + +
=

′= =∑ .  

2.1   The Markovian Evolution Process  

Next, we consider the range ( ), ( ),(min ;max )k x k k x kz z  of the portfolio gross returns, 

where ( ),x kz  is the k-th past observation of the portfolio ( )xz . Without loss of generality 
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we assume that the N states ( )
( )
i
xz   of portfolio gross return are ordered as follows 

( ) ( 1)
( ) ( )
i i
x xz z +>    for  1,..., 1i N= − . Since we want to have a recombining tree of the 

Markov chain, we first divide the portfolio support ( ), ( ),(min ;max )k x k k x kz z  in N in-

tervals  ( ), ( ), 1( ; )x i x ia a −  where  

/

( ),
( ), ( ),

( ),

min
max ,    0,1, ,

max

i N

k x k
x i k x k

k x k

z
a z i N

z

⎛ ⎞
= ⋅ =⎜ ⎟⎜ ⎟
⎝ ⎠

…   is 

decreasing with index i. Then, we compute the return associated to each state as the 
geometric average of the extremes of the interval ( ), ( ), 1( ; )x i x ia a − , that is 

1 2
2

( )

( ),( )
( ) ( ), ( ), 1 ( ),

( ),

max
: max , 1,2,...,

min

i
N

x ki
x x i x i x k

k
x k

z
z a a z i N

z

−

−

⎛ ⎞
= = =⎜ ⎟⎜ ⎟

⎝ ⎠
.                     (1) 

Consequently ( ) (1) 1
( ) ( )
i i
x xz z u −= , where ( )( ),

( ),

1/max

min 1x k

x k

Nz

zu = > .  Let us assume that the initial 

wealth 0W  at time 0 is equal to 1, while for each possible wealth tW  at time t we have 

N possible different values ( )
1 ( )

i
t t xW W z+ =  (i=1,…,N) at time t+1. Thanks to the recom-

bining effect of the Markov chain we have 1 ( 1)k N+ −  possible values after  k  steps 

of wealth ( )kW x  that are given by the formula ( , ) (1) (1 )
( ) ( )( )i k k i
x xw z u −=  

1,..., ( 1) 1i N k= − + , where the  i-th node at time k of the Markovian tree corresponds 

to wealth ( , )
( )
i k
xw . Moreover, all possible values of the random wealth ( )kW x  can be 

stored in a matrix with k columns and 1 ( 1)k N+ −  rows resulting in 2( )O Nk   mem-

ory space requirement. Since we assume homogeneous Markov chain the transition 
matrix ,[ ]i jP p=  does not depend on time and the entries ,i jp  are estimated using the 

maximum likelihood estimates 
( )

, ( )
ˆ ij

i

K

i j Kp
π
π= , where ( )ij Kπ  is the number of observa-

tions (out of  K  observations) that transit from the i-th state to the j-th state and 
( )i Kπ  is the number of observations (out of K observations) in the i-th state (see 

D'Amico (2003) for the statistical properties of these estimators). Following the idea 
of Iaquinta and Ortobelli (2006) we can compute the distribution function of the fu-
ture gross returns. In particular, as shown by Angelelli and Ortobelli (2008), the 
( 1) 1N k− +  dimensional vector ( )kp (representing the unconditional distribution at a 

given time k = 0,1,2,...,T of wealth ( )kW x ) can be computed by means of a sequence 

of matrixes { }( )

0,1,...,

k

k T
Q

=
, where ( ) ( )

, 1 ( 1) 1
1

[ ]k k
i j i N k

j N

Q q ≤ ≤ − +
≤ ≤

=  and ( )
,
k

i jq  is the unconditional 

probability at time k to obtain the wealth ( , )
( )
i k
xw  and to be in the state ( )

( )
j
xz . In particu-

lar, (0)
1[ ,..., ]NQ p p=  , where ip  is the unconditional probability to be in the  i-th 

state at time 0. Thus, (0) (0)1 Np Q= = ⋅1 , where N1  is the unity vector column. In 

general, for 1,...,k T= , the vector ( )kp  is given by ( ) ( )k k
Np Q= ⋅1 , where ( )kQ  is 
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recursively defined as ( ) ( 1)( )k kQ Q P−= ⋅diagM  being diagM a linear operator de-

fined for any Nnm ∈,  as diagM: ( )nnmmn RR 1−+→  that at any m n×  matrix 

[ ]ijA a=   associates the  ( 1)m n n+ − ×  matrix obtained by simply shifting down the 

j-th column by ( 1)j −  rows (see Iaquinta and Ortobelli (2006), Angelelli and Ortobelli 

(2008) for further details). The matrix ( )kQ  is the so called unconditional evolution 

matrix of the Markov chain or simply evolution matrix. Moreover, the algorithm to 
compute the probabilities has a computational complexity of ( ³ ²)O N k .  

2.2   The Portfolio Selection Problem 

The static portfolio selection problem when no short sales are allowed, can be repre-
sented as the maximization of the expected utility applied to the random portfolio of 
gross returns ( ), 1x tz +  subject to the portfolio weights belonging to the n-dimensional 

simplex  { }1R | 1; 0n n
i i iS x x x== ∈ = ≥∑ , i.e., ( ), 1max ( ( ))x t

x S
E u z +∈

, for a given utility 

function u. This represents the classic myopic utility functional that does not use the 
time evolution of the wealth process. In a dynamic context we consider an initial 
wealth 0 1W =  and all admissible wealth processes 0( ) { ( )}t tW x W x ≥=  depending by 

an initial portfolio x S∈  are defined on a filtered probability space 

( )( )0
, , ,t t

P
≤ ≤∞

Ω ℑ ℑ . In this case we can distinguish two cases: the case where the 

investors recalibrate the portfolio at some given date T (European portfolio selection 
strategies) and the case where the investors recalibrate the portfolio at some given 
date  t T≤   if some particular events t tA ∈ ℑ  happen (American portfolio selection 

strategies). In this paper we deal only European portfolio selection strategies where 
investors recalibrate their portfolio every T periods solving the problem: 

( )max ( ( ))T
x S

E u W x
∈

.                                                     (2) 

According to Angelelli and Ortobelli (2008) definition we call OA expected utility the 
above functional ( ( ( )))TE u W x  when it is computed under the assumption that the 

gross return of each portfolio follows a Markov chain with N states. The European 
OA expected utility is given by 

( ) ( )( ) ( )ˆ ˆ( ( ( ))) ( ) ( ) ,T T
T T NE u W x u W x Q u W x p= ⋅ ⋅ = ⋅1                         (3) 

where (1, ) ( 1) 1, )
( ) ( )

ˆ ( ) ,...,T N T T
T x xW x w w − +⎡ ⎤= ⎣ ⎦  is the ( 1) 1N T− +  dimensional vector of the 

final wealth and ( ) (1, ) ( 1) 1, )
( ) ( )

ˆ ( ) ( ),..., ( )T N T T
T x xu W x u w u w − +⎡ ⎤= ⎣ ⎦ . Since Angelelli and Orto-

belli (2008) have shown that standard optimization algorithms are not adequately suited 
to solve the global optimization problem (2) of OA expected utility, we use the same 
optimization heuristic proposed by Angelelli and Ortobelli (2008) to solve portfolio 
optimization problems. So, starting by an initial feasible portfolio solution x , the heu-
ristic algorithm tries to iteratively update the current solution by a better one. Improving 



592 E. Angelelli and S. Ortobelli Lozza 

 

solutions, if any, are searched on a predefined grid of points fixed on the directions 

ix e−  for 1, 2,...,i n= , where x is the current portfolio and ie  is the portfolio where the 

share of asset i is equal to 1 and all other assets have share equal to 0. If a better solution 
is found on a search direction the current solution is updated and the search is continued 
from the new one. If no direction provides an improved solution the search ends. Next, 
we recall some empirical results provided by Angelelli and Ortobelli (2008), who tested 
the performance of the optimization heuristic algorithm versus function fmincon pro-
vided with the optimization toolbox of MATLAB. The results are synthesized in Table 
1 that reports the percentage in average of variations : 

• of the estimated function heuristic fmincon

fmincon

f f

ff −Δ = , where []f  represents the optimal ob-

jective function obtained using the [ ] algorithm ([ ] can be either fmincon or the 
heuristic); 

• of the time heuristic fmincon

fmincon

Timef Timef

Timeft −Δ =  where []Timef  represents the computational 

time necessary to optimize the objective function using the [ ] algorithm; 

• of the portfolio weights ( ) ( )
1 heuristic fmincon

i in
ix x x=Δ = −∑  where ( )

[]
ix  represents the i-th 

optimal weight obtained using the [ ] algorithm. 

Table 1.  Performance comparison between fmincon and the optimization heuristic (see  
Angelelli and Ortobelli (2008) for a definition of these strategies) 

Functional fΔ  tΔ  xΔ  

Myopic Sharpe -0.002% 502.963% 0.010 
OA-Sharpe 163.084% 328.202% 1.447 
Myopic Rachev 2.696% 213.160% 0.774 
OA-Rachev 15465.330% 240.005% 1.681 

 
Table 1 underlines the limit of fmincon Matlab procedure to approximate a global 

optimum when the functionals admit many local maxima. These results tell us that the 
heuristic algorithm generally needs more computational time of fmincon Matlab 
procedure. However, we have a significant improvement in terms of objective func-
tion and portfolio weights when we use the heuristic. Moreover, the heuristic well 
approximates the optimum when this is unique; indeed there is just a little difference 
with the myopic Sharpe functional in terms of values and portfolios. From the results 
we deduce that the fmincon procedure can be used only for myopic strategies that 
admit an unique optimum (such as the myopic Sharpe strategy). Thus, as suggested by  
Angelelli and Ortobelli (2008), the main advantages of this algorithm are: 

1) The algorithm permits to approximate the global optimum with a given error 
when the objective function is a non-constant concave function (the optimum is 
unique) and some particular lines are not contour lines of the objective function. 

2) The algorithm permits to explore the whole simplex. 
3) The computational complexity is much less than that of classic algorithms for 

global optimum such as Simulated Annealing type algorithms. 
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3   An Ex-post Comparison among OA Portfolio Strategies Based 
on the Maximum Expected Utility 

In this section, we propose an ex post comparison among European OA expected 
utility strategies and the myopic ones. In the empirical comparisons, we consider the 
optimal allocation among 20 assets components of the Dow Jones Industrials1 on the 
period from 1/3/1985 till 5/1/2008 for a total of 5884  daily observations. The work of 
Kondor et al. (2007) on the sensitivity to estimation error of portfolios optimized 
under various risk measures suggests that we need a large number of observations 
when we want to propose portfolio models considering rare events. As a matter of 
fact, Papp et al. (2005), Kondor et al. (2007) have shown that we could loose robust-
ness of the approximations if the number of observations is not adequate to the num-
ber of assets. In addition, some empirical experiments show that, if we increase the 
number of the states, we need an increasing number of observations. For this reason 
we forecasted the future wealth using a non parametric Markov chain with only few 
states N=3, N=5 states and 2000K =  historical observations. We assume investors 
recalibrate the portfolio every 60T =  days starting from 1/3/1985. The comparison 
consists in the ex post evaluation of the wealth produced by the strategies. We com-
pare the performance of myopic and OA expected utility strategies based on the fol-
lowing HARA utility functions: 

1) negative exponential utility function:  

( ) exp( )u W aW= − − ; with   a=1, 5, 10, 15, 20. 

2) power utility function: 

( )
gW

u W
g

= ; with   g=-1, -0.6, -0.2, 0.2, 0.6, 1, 1.4, 1.8, 2.2, 2.6, 3. 

With myopic strategies the expected utility of each portfolio is approximated consid-

ering the last 2000K =  observations and computing ( )1 1
1

1
( ( ))

K

t t
t

E u xz u xz
K+ +

=

′ ′≈ ∑ . For 

each strategy, we consider an initial wealth  0 1W =  at the date 1/3/1985, and at the k-

th recalibration ( 0,1,2,...k = ), the investor should solve: 

( )

( )

( )
60

( )

( )

ˆmax ( ( ( )))

s.t.

1,

0; 1, , ,

k k

k
t

x

k

k
i

E u W x

x e

x i n

+

′
=

≥ = …

                                                 (4) 

                                                           
1  We used the following components: 3M Company, Alcoa Inc, American Express, AT&T, 

Boeing Co, Caterpillar Inc, Coca Cola, Du Pont, Exxon Mobil, General Electric, General 
Motors, Hewlett Packard, IBM, Johnson and Johnson, McDonalds, Merck, Procter Gamble, 
United technologies, Wal Mart Stores, Walt Disney. 
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where 60
ˆ

kt
W +  is the forecasted wealth at time 1kt + . So, the ex-post final wealth is given 

by ( )( )1

( ) (  )

k k

k ex post
t t MW W x z

+

′
= , where (  )ex postz  is the vector of observed gross returns 

between kt  and 1 60k kt t+ = + .  

Table 2. Final wealth obtained at date 5/1/2008 using myopic and Markovian strategies and 
maximizing the expected power utility 

Parameter 
 

HARA Power Utility 
 

OA-HARA-power utility 
Markovian strategies  

g Myopic strategy states=3 states=5 

-1 3.8135 10.8913 9.1947 

-0.6 3.9096 11.102 9.466 

-0.2 3.973 11.2265 9.5626 

0.2 3.5307 11.3135 9.104 

0.6 2.0762 11.2862 9.142 

1 1.5423 11.3808 7.9091 

1.4 2.2367 11.5531 7.7919 

1.8 2.0602 11.324 7.7235 

2.2 1.9872 11.2224 8.131 

2.6 6.0933 10.9617 7.623 

3 3.4551 11.1149 7.9061 

Table 3. Final wealth obtained at date 5/1/2008 using myopic and Markovian strategies and 
maximizing the expected negative exponential utility 

 
HARA negative  

exponential utility  

OA-HARA negative 
exponential utility 

Markovian strategies 

a Myopic strategies states=3 states=5

1 3.927 11.1103 9.6179 

5 4.187 12.2377 9.6295 

10 5.087 10.9565 10.9592 

15 5.494 8.8739 12.414 

20 5.950 9.4837 7.7379 

 
The output of this analysis is represented in Tables 2, 3, Fig. 1, and Fig. 2. Tables 2 

and 3 show the ex-post final wealth at date 5/1/2008 obtained with myopic and Mark-
ovian strategies and maximizing expected power utility and expected negative expo-
nential utility. We observe that always the Markovian strategies perform better than 
myopic strategies. Moreover we also observe that we get better results using three 
states. We believe that this fact can be justified by a more robust approximation of the 
forecasted final wealth (see Papp et al. (2005), Kondor et al. (2007)). These results are 
further confirmed by Fig. 1, and Fig. 2 that describe  the ex post sample paths of final 
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wealth. Figures 1 and 2 show better performance of OA expected utility strategies 
respectively for power utility with risk aversion parameter g= -0.2 and with negative 
exponential utility with parameter a= 10. 

This empirical comparison suggests the use of OA type strategies since with these 
strategies we get in some cases even three times the final wealth we get with the 
analogous myopic strategies. 
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Fig. 1. Performances obtained with HARA power utility (g= -0.2) 
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Fig. 2. Performances obtained with HARA negative exponential utility (a=10) 
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4   Concluding Remarks 

This paper analyzes the impact of Markovianity in optimal portfolio choices. We exam-
ine how to approximate non parametric Markov processes and we deal the computa-
tional complexity of these portfolio selection problems. Thus we propose algorithms 
that permit to solve computationally complex problems in acceptable computational 
times. Secondly, we propose an empirical comparison among the myopic portfolio 
selection models and the Markovian ones. The ex-post empirical comparison among 
classic approaches and those based on Markovian trees shows the greater predictable 
capacity of the latter.  

The contribution of this paper consists in the computational accessible methodol-
ogy to solve dynamic expected utility portfolio problems.  
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