Skip to main content

Buoyancy Control in Aquatic Vertebrates

  • Chapter
  • First Online:

Abstract

Water-living animals typically face a buoyancy problem because the density of body tissues often exceeds the density of the water replaced by the body. Depending on the particular ecological niche, aquatic vertebrates and especially fish have adopted various behavioral strategies and/or special buoyancy devices to compensate for these density differences, in order to reduce overall energy expenditure. Lipid accumulation or gas cavities such as the swimbladder or the lung, for example, may significantly contribute to a reduction in overall body density. For some species swimming activity may be more efficient than special low-density tissues in order to stay at a certain water depth.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ackman RG, Addison RF, Eaton CA (1968) Unusual occurrence of squalene in a fish, the Eulachon Thaleichthys pacificus. Nature 220:1033–1034

    PubMed  CAS  Google Scholar 

  • Alexander RM (1965) The lift produced by the heterocercal tails of selachii. Journal of Experimental Biology 431:31–138

    Google Scholar 

  • Alexander RM (1966a) Lift produced by the heterocercal tail of Acipenser. Nature 210:1049–1050

    CAS  Google Scholar 

  • Alexander RM (1966b) Physical aspects of swimbladder function. Biological Reviews 41:141–176

    CAS  Google Scholar 

  • Alexander RM (1971) Swimbladder gas secretion and energy expenditure in vertically migrating fishes. In: Farquhar GB (ed) Proceedings of the International Symposium on Biological Sound Scattering in the Ocean. US Government Printing Office, Washington, D.C., pp 75–86

    Google Scholar 

  • Alexander RM (1972) The energetics of vertical migration by fishes. In: Sleigh MA, MacDonald AG (eds) Effects of pressure on organisms. Cambridge University Press, Cambridge UK, pp 273–294

    Google Scholar 

  • Alexander RM (1990) Size, speed and buoyancy adaptations in aquatic animals. American Zoologist 30:189–196

    Google Scholar 

  • Baldridge HD (1970) Sinking factors and average densities of Florida sharks as functions of liver buoyancy. Copeia 1970:744–754

    Google Scholar 

  • Benson AA, Lee RF (1975) The role of wax in oceanic food chains. Scientific American 232:76–86

    PubMed  CAS  Google Scholar 

  • Berenbrink M, Koldkjaer P, Kepp O, Cossins AR (2005) Evolution of oxygen secretion in fishes and the emergence of a complex physiological system. Science 307:1752–1757

    PubMed  CAS  Google Scholar 

  • Biuw M, McConnell B, Bradshaw CJA, Burton H, Fedak M (2003) Blubber and buoyancy: monitoring the body condition of free-ranging seals using simple dive characteristics. Journal of Experimental Biology 206:3405–3423

    PubMed  Google Scholar 

  • Bonaventura C, Crumbliss AL, Weber RE (2004) New insights into the proton-dependent oxygen affinity of root effect haemoglobins. Acta Physiologica Scandinavica 182:1–14

    Google Scholar 

  • Bone Q (1972) Buoyancy and hydrodynamic functions of integument in the castor oil fish, Ruvettus pretiosus (Pisces: Gempylidae). Copeia 1972:78–87

    Google Scholar 

  • Bone Q, Roberts BL (1969) The density of elasmobranchs. Journal of the Marine Biological Association of the United Kingdom. Marine Biological Association of the United Kingdom 499:13–937

    Google Scholar 

  • Brittain T (2005) Root effect hemoglobins. Journal of Inorganic Biochemistry 99:120–129

    PubMed  CAS  Google Scholar 

  • Brown DS, Copeland DE (1978) Layered membranes: a diffusion barrier to gases in teleostean swimbladders. Tissue and Cell 10:785–796

    PubMed  CAS  Google Scholar 

  • Butler JL, Pearcy WG (1972) Swimbladder morphology and specific gravity of myctophids off Oregon. Journal Fish Research Bd Canada 29:1145–1150

    Google Scholar 

  • Clarke MR (1970) Function of the spermaceti organ of the sperm whale. Nature 228:873–874

    PubMed  CAS  Google Scholar 

  • Clarke MR (1978a) Buoyancy control as a function of the spermaceti organ in the sperm whale. Journal of the Marine Biological Association of the United Kingdom. Marine Biological Association of the United Kingdom 58:27–71

    Google Scholar 

  • Clarke MR (1978b) Physical properties of spermaceti oil in the sperm whale. Journal of the Marine Biological Association of the United Kingdom. Marine Biological Association of the United Kingdom 58:19–26

    Google Scholar 

  • Clarke A, Doherty N, DeVries AL, Eastman JT (1984) Lipid content and compositon of three species of Antarctic fish in relation to buoyancy. Polar Biology 3:77–83

    CAS  Google Scholar 

  • Coombs SH, Fosh CA, Keen MA (1985) The buoyancy and vertical distribution of eggs of Sprat (Sprattus sprattus) and Pilchard (Sardina pilchardus). Journal of the Marine Biological Association of the United Kingdom. Marine Biological Association of the United Kingdom 65:461–474

    Google Scholar 

  • Copeland DE (1969) Fine structural study of gas secretion in the physoclistous swim bladder of Fundulus heteroclitus and Gadus callarias and in the euphysoclistous swim bladder of Opsanus tau. Zeitschrift für Zellforschung und mikroskopische Anatomie 93:305–331

    Google Scholar 

  • Corner EDS, Denton EJ, Forster FRS, Forster GR (1969) On the buoyancy of some deep-sea sharks. Proceedings of the Royal Society of London. Series B, containing papers of a Biological character. Royal Society 171:415–429

    Google Scholar 

  • Craik JCA, Harvey SM (1987) The causes of buoyancy in eggs of marine teleosts. Journal of the Marine Biological Association of the United Kingdom. Marine Biological Association of the United Kingdom 67:169–182

    Google Scholar 

  • Cranford TW (1999) The sperm whale's nose: sexual selection on a grand scale? Marine Mammal Science 15:1133–1157

    Google Scholar 

  • D'Aoust BG (1970) The role of lactic acid in gas secretion in the teleost swimbladder. Comparative Biochemistry Physiology 326:37–668

    Google Scholar 

  • Davenport J, Kjorsvik E (1986) Buoyancy in the Lumpsucker Cyclopterus lumpus. Journal of the Marine Biological Association of the United Kingdom. Marine Biological Association of the United Kingdom 66:159–174

    Google Scholar 

  • Denton E (1960) The buoyancy of marine animals. Scientific American 203:119–129

    Google Scholar 

  • Denton EJ (1961) The buoyancy of fish and cephalopods. Progress in Biophysics and Biophysical Chemistry 1:178–234

    Google Scholar 

  • Denton EJ, Gilpin-Brown JB, Shaw TI (1969) A buoyancy mechanism found in cranchid squid. Proceedings of the Royal Society of London. Series B, containing papers of a Biological character. Royal Society 174:271–279

    Google Scholar 

  • Denton EJ, Liddicoat JD, Taylor DW (1972) The permeability to gases of the swimbladder of the conger eel (Conger conger). Journal of the Marine Biological Association of the United Kingdom. Marine Biological Association of the United Kingdom 52:727–746

    CAS  Google Scholar 

  • DeVries AL, Eastman JT (1978) Lipid sacs as a buoyancy adaptation in an Antarctic fish. Nature 271:352–353

    Google Scholar 

  • Dorn E (1961) Über den Feinbau der Schwimmblase von Anguilla vulgaris L. Licht- und elektronenmikroskopische Untersuchungen. Zeitschrift für Zellforschung und mikroskopische Anatomie 55:849–912

    PubMed  CAS  Google Scholar 

  • Eastman JT (1985) The evolution of neutrally buoyant Notothenioid fishes: their specializations and potential interactions in the Antarctic marine food web. In: Siegfried WR, Condy PR, Laws RM (eds) Antarctic nutrient cylces and food webs. Springer, Berlin, Heidelberg, pp 430–436

    Google Scholar 

  • Eastman JT (1988) Lipid storage systems and the biology of two neutrally buoyant Antarctic Notothenioid fishes. Comparative Biochemistry Physiology 90B:529–537

    CAS  Google Scholar 

  • Eastman JT, DeVries AL (1981) Buoyancy adaptations in a swim-bladderless Antarctic fish. Journal of Morphology 167:91–102

    Google Scholar 

  • Eastman JT, DeVries AL (1982) Buoyancy studies of Notothenioid fishes in McMurdo Sound, Antarctica. Copeia 1982:385–393

    Google Scholar 

  • Enns T, Douglas E, Scholander PF (1967) Role of the swimbladder rete of fish in secretion of inert gas and oxygen. Advances in Biological and Medical Physics 112:31–244

    Google Scholar 

  • Ewart HS, Driedzic WR (1990) Enzyme activity levels underestimate lactate production rates in cod (Gadus morhua) gas gland. Canadian Journal Zoology 68:193–197

    CAS  Google Scholar 

  • Falk-Petersen S, Falk-Petersen I-B, Sargent JR (1986) Structure and function of an unusal lipid storage organ in the Arctic fish Lumpenus maculatus fries. Sarsia 71:1–6

    CAS  Google Scholar 

  • Fänge R (1953) The mechanisms of gas transport in the euphysoclist swimbladder. Acta Physiologica Scandinavica 30:1–133

    Google Scholar 

  • Fänge R (1983) Gas exchange in fish swim bladder. Reviews of Physiology Biochemistry and Pharmacology 97:111–158

    Google Scholar 

  • Fänge R, Holmgren S, Nilsson S. (1976) Autonomic nerve control of the swimbladder of the goldsinny wrasse, Ctenolabrus rupestris. Acta Physiologica Scandinavica 97:292–303

    PubMed  Google Scholar 

  • Finkelstein A (1976) Water and nonelectrolyte permeability of lipid bilayer membranes. The Journal of General Physiology 68:127–165

    PubMed  CAS  Google Scholar 

  • Fish FE, Smelstoys J, Baudinette RV, Reynolds PS (2002) Fur does not fly, it floats: buoyancy of pelage in semi-aquatic mammals. Aquatic Mammals 28:103–112

    Google Scholar 

  • Gee JH (1983) Ecologic implications of buoyancy control in fish. In: Webb PW (ed) Fish Biomechanics. Praeger Scientific, New York, pp 140–176

    Google Scholar 

  • Gray N-M, Kainec K, Madar S, Tomko L, Wolfe S (2007) Sink or swim? Bone density as a mechanism for buoyancy control in early cetaceans. The Anatomical Record 290:638–653

    PubMed  Google Scholar 

  • Grigor MR, Sutherland WH, Phleger CF (1990) Wax ester metabolism in the orange roughly (Hoplostethus atlanticus) (Bericiformes: Trachichthydae). Marine Biology 105:223–227

    CAS  Google Scholar 

  • Hayashi K, Kashiki I (1988) Level and composition of wax esters in the different tissues of deep-sea teleost fish Laemonema longipes. Bulletin of the Japanese Society of Scientific Fisheries 54:135–140

    CAS  Google Scholar 

  • Hayashi K, Takagi T (1981) Distribution of squalene and diacyl glyceryl ethers in the different tissues of deep-sea shark, Dalatias licha. Bulletin of the Japanese Society of Scientific Fisheries 47:281–288

    CAS  Google Scholar 

  • Hays GC, Metcalfe JD, Walne AW (2004) The implications of lung-regulated buoyancy control for dive depth and duration. Ecology 85:1137–1145

    Google Scholar 

  • Horn MH, Grimes PW, Phleger CF, McClanahan LL (1978) Buoyancy function of the enlarged fluid-filled cranium in the deep-sea Ophidiid fish Acanthonus armatus. Marine Biology 46:335–339

    Google Scholar 

  • Jackson DC (1969) Buoyancy control in the freshwater turtle, Pseudemys scripta elegans. Science 166:1649–1651

    PubMed  CAS  Google Scholar 

  • Jasinski A, Kilarski W (1969) On the fine structure of the gas gland in some fishes. Zeitschrift für Zellforschung und mikroskopische Anatomie 102:333–356

    PubMed  CAS  Google Scholar 

  • Johansen K (1962) Buoyancy and insulation in the Muskrat. Journal of Mammalogy 43:64–68

    Google Scholar 

  • Josephson RV, Holtz RB, Misock JP, Phleger CF (1975) Composition and partial protein characterization of swimbladder foam from deep-sea fish Coryphaenoides acrolepis and Antimora rostrata. Comparative Biochemistry Physiology 52B:91–95

    Google Scholar 

  • Kalish JM, Greenlaw CF, Pearcy WG, Van Holliday D (1986) The biological and acoustical structure of sound-scattering layers off Oregon. Deep Sea Research Part A Oceanographic Research Papers 33:631–653

    Google Scholar 

  • Kleckner RC (1980a) Swim bladder volume maintenance related to initial oceanic migratory depth in silver-phase Anguilla rostrata. Science 208:1481–1482

    CAS  Google Scholar 

  • Kleckner RC (1980b) Swimbladder wall guanine enhancement related to migratory depth in silver phase Anguilla rostrata. Comparative Biochemistry Physiology 65A:351–354

    CAS  Google Scholar 

  • Kobayashi H, Pelster B, Scheid P (1989a) Solute back-diffusion raises the gas concentrating efficiency in counter-current flow. Respiration Physiology 78:59–71

    CAS  Google Scholar 

  • Kobayashi H, Pelster B, Scheid P (1989b) Water and lactate movement in the swimbladder of the eel, Anguilla anguilla. Respiration Physiology 78:45–57

    CAS  Google Scholar 

  • Kobayashi H, Pelster B, Scheid P (1990) CO2 back-diffusion in the rete aids O2 secretion in the swimbladder of the eel. Respiration Physiology 79:231–242

    PubMed  CAS  Google Scholar 

  • Kuhn W, Ramel A, Kuhn HJ, Marti E (1963) The filling mechanism of the swimbladder. Generation of high gas pressures through hairpin countercurrent multiplication. Experientia 19:497–511

    PubMed  CAS  Google Scholar 

  • Kutchai H, Steen JB (1971) The permeability of the swimbladder. Comparative Biochemistry Physiology 39A:119–123

    Google Scholar 

  • Lapennas GN, Schmidt-Nielsen K (1977) Swimbladder permeability to oxygen. Journal of Experimental Biology 67:175–196

    CAS  Google Scholar 

  • Lee RF, Phleger CF, Horn MH (1975) Composition of oil in fish bones: possible function in neutral buoyancy. Comparative Biochemistry and Physiology 50B;13–16

    Google Scholar 

  • Lundin K, Holmgren S (1991) An X-ray study of the influence of vasoactive intestinal polypeptide and substance P on the secretion of gas into the swimbladder of a teleost Gadus morhua. Journal of Experimental Biology 157:287–298

    CAS  Google Scholar 

  • Magnuson JJ (1970) Hydrostatic equilibrium of Euthynnus affinis, a pelagic teleost without a gas bladder. Copeia 1970:56–85

    Google Scholar 

  • Magnuson JJ (1978) Locomotion by scombrid fishes: hydromechanics, morphology, and behavior. Fish Physiology 72:39–313

    Google Scholar 

  • Malins DC, Barone A (1969) Glyceryl ether metabolism: regulation of buoyancy in dogfish Squalus acanthias. Science 167:79–80

    Google Scholar 

  • Marshall NB (1972) Swimbladder organization and depth ranges of deep-sea teleosts. Symposia of the Society for Experimental Biology 26:261–272

    PubMed  CAS  Google Scholar 

  • Marshall NB (1960) Swimbladder structure of deep-sea fishes in relation to their systematics and biology. Discovery Reports 31:1–122

    Google Scholar 

  • McLean JR, Nilsson S (1981) A histochemical study of the gas gland innervation in the Atlantic cod, Gadus morhua. Acta Zoologica 62:187–194

    Google Scholar 

  • Meesters A, Nagel FGP (1935) Über Sekretion und Resorption in der Schwimmblase des Flu β barsches. Zeitschrift für vergleichende Physiologie 21:646–657

    Google Scholar 

  • Minamikawa S, Neito Y, Uchida I (1997) Buoyancy control in diving behavior of the loggerhead turtle, Caretta caretta. Journal Ethology 15:109–118

    Google Scholar 

  • Minamikawa S, Naito Y, Sato K, Matsuzawa Y, Bando T, Sakamoto W (2000) Maintenance of neutral buoyancy by depth selection in the loggerhead turtle Caretta caretta. Journal of Experimental Biology 203:2967–2975

    PubMed  CAS  Google Scholar 

  • Morris SM, Albright JT (1975) The ultrastructure of the swimbladder of the toadfish, Opsanus tau L. Cell and Tissue Research 164:85–104

    PubMed  CAS  Google Scholar 

  • Morris RJ, Culkin F (1989) Fish. In: Ackman RG (ed) Marine Biogenic Lipids, Fats and Oils, Vol. 2. CRC, Florida, pp 145–178

    Google Scholar 

  • Mylvaganam SE, Bonaventura C, Bonaventura J, Getzoff ED (1996) Structural basis for the Root effect in haemoglobin. Nature Structural Biology 3:275–283

    PubMed  CAS  Google Scholar 

  • Neighbors MA (1992) Occurrence of inflated swimbladders in five species of lanternfishes (family Myctophidae) from waters off southern California. Marine Biology 114:355–363

    Google Scholar 

  • Neilson JD, Perry RI (1990) Diel vertical migrations of marine fishes: an obligate or facultative process. Advances in Marine Biology 26:115–168

    Google Scholar 

  • Nevenzel JC (1970) Occurrence, function and biosynthesis of wax esters in marine organisms. Lipids 5:308–319

    PubMed  CAS  Google Scholar 

  • Nevenzel JC (1989) Biogenic hydrocarbons of marine organisms. In: Ackman RG (ed) Marine Biogenic Lipids, Fats, and Oils, Vol. 1. CRC, Boca Raton, pp. 3–72

    Google Scholar 

  • Nevenzel JC, Rodegker W, Mead JF (1966) Lipids of the living Coelacanth, Latimeria chalumnae. Science 152:1753–1755

    PubMed  CAS  Google Scholar 

  • Nielsen JG, Munk O (1964) A hadal fish (Bassogigas profundissimus) with a functional swimbladder. Nature 204:594–595

    Google Scholar 

  • Nilsson S (1971) Adrenergic innervation and drug responses of the oval sphincter in the swimbladder of the cod (Gadus morhua). Acta Physiologica Scandinavica 83:446–453

    PubMed  CAS  Google Scholar 

  • Nilsson S (1972) Autonomic vasomotor innervation in the gas gland of the swimbladder of a Teleost (Gadus morhua). Comparative General Pharmacology 3:371–375

    CAS  Google Scholar 

  • Nursall JR (1989) Buoyancy is provided by lipids of larval redlip Blennies, Ophioblennius atlanticus (Teleostei: Blenniidae). Copeia 1989:614–621

    Google Scholar 

  • Nybelin O (1957) Deep-sea bottom fishes. Report of the Swedish Deep Sea Expedition 2. Zoology 20:247–345

    Google Scholar 

  • Pelster B (1994) Adrenergic control of swimbladder perfusion in the European eel Anguilla anguilla. Journal of Experimental Biology 189:237–250

    PubMed  CAS  Google Scholar 

  • Pelster B (1995a) Lactate production in isolated swim bladder tissue of the European eel Anguilla anguilla. Physiological Zoology 68:634–646

    CAS  Google Scholar 

  • Pelster B (1995b) Mechanisms of acid release in isolated gas-gland cells of the European eel Anguilla anguilla. American Journal Physiology 269:R793–R799

    CAS  Google Scholar 

  • Pelster B (1995c) Metabolism of the swimbladder tissue. Biochemistry Molecular Biology Fishes 4:101–118

    CAS  Google Scholar 

  • Pelster B (2001) The generation of hyperbaric oxygen tensions in fish. News in Physiological Sciences 16:287–291

    PubMed  CAS  Google Scholar 

  • Pelster B, Randall DJ (1998) The physiology of the Root effect. In: Perry SF, Tufts BL (eds) Fish Respiration. Academic, San Diego, pp 113–139

    Google Scholar 

  • Pelster B, Scheid P (1992) The influence of gas gland metabolism and blood flow on gas deposition into the swimbladder of the European eel Anguilla anguilla. Journal of Experimental Biology 173:205–216

    Google Scholar 

  • Pelster B, Scheid P (1993) Metabolism of the swimbladder epithelium and the single concentrating effect. Comparative and Biochemistry Physiology 105A:383–388

    CAS  Google Scholar 

  • Pelster B, Kobayashi H, Scheid P (1988) Solubility of nitrogen and argon in eel whole blood and its relationship to pH. Journal of Experimental Biology 135:243–252

    PubMed  CAS  Google Scholar 

  • Pelster B, Kobayashi H, Scheid P (1990) Reduction of gas solubility in the fish swimbladder. In: Piiper J, Goldstick TK, Meyer M (eds) Oxygen Transport to Tissue. Plenum, New York, pp 725–733

    Google Scholar 

  • Pelster B, Hicks J, Driedzic WR (1994) Contribution of the pentose phosphate shunt to the formation of CO2 in swimbladder tissue of the eel. Journal of Experimental Biology 197:119–128

    PubMed  CAS  Google Scholar 

  • Phleger CF (1975) Bone lipids of Kona Coast reef fish: skull buoyancy in the hawkfish, Cirrhites pinnulatus. Comparative and Biochemistry Physiology 52B:101–104

    Google Scholar 

  • Phleger CF (1987) Bone lipids of tropical reef fishes. Comparative and Biochemistry Physiology 86B:509–512

    CAS  Google Scholar 

  • Phleger CF (1988a) Bone lipids of Jamaican reef fishes. Comparative and Biochemistry Physiology 90B:279–283

    CAS  Google Scholar 

  • Phleger CF (1988b) The importance of skull lipid as an energy reserve during starvation in the ocean surgeon, Acanthurus bahianus. Comparative and Biochemistry Physiology 91A:97–100

    CAS  Google Scholar 

  • Phleger CF (1991) Biochemical aspects of buoyancy in fishes. In: Hochachka PW, Mommsen TP (eds) Biochemistry and Molecular Biology of Fishes. Elsevier, Amsterdam, pp 209–247

    Google Scholar 

  • Phleger CF, Benson AA (1971) Cholesterol and hyperbaric oxygen in swimbladders of deep-sea fishes. Nature 230:122

    PubMed  CAS  Google Scholar 

  • Phleger CF, Grigor MR (1990) Role of wax esters in determining buoyancy in Hoplostethus atlanticus (Beryciformes: Trachichthyidae). Marine Biology 105:229–233

    CAS  Google Scholar 

  • Phleger CF, Grimes PW (1976) Bone lipids of marine fishes. Physiological Chemistry and Physics 8:447–456

    PubMed  CAS  Google Scholar 

  • Phleger CF, Holtz RB (1973) The membranous lining of the swimbladder in deep sea fishes. I. Morphology and chemical composition. Comparative and Biochemistry Physiology 45B:867–873

    Google Scholar 

  • Phleger CF, Laub RJ (1989) Skeletal fatty acids in fish from different depths off Jamaica. Comparative and Biochemistry Physiology 94B:329–334

    CAS  Google Scholar 

  • Phleger CF, Grimes PW, Pesely A, Horn MH (1978) Swimbladder lipids of five species of deep benthopelagic Atlantic ocean fishes. Bulletin of Marine Science 28:198–202

    CAS  Google Scholar 

  • Phleger CF, Patton J, Grimes P, Lee RF (1976) Fish-bone oil: percent total body lipid and carbon-14 uptake following feeding of 1–14C-Palmitic acid. Marine Biology 35:85–89

    CAS  Google Scholar 

  • Piet GJ, Guruge WAHP (1997) Diel variation in feeding and vertical distribution of ten co-occurring fish species: consequences for resource partitioning. EBF 50:293–307

    Google Scholar 

  • Piiper J (1965) Physiological equilibria of gas cavities in the body. In: Fenn WO, Rahn H (eds) Handbook of Physiology, Respiration. American Physiological Society, Bethesda, Maryland, pp 1205–1218

    Google Scholar 

  • Reidenberg JS (2007) Anatomical adaptations of aquatic mammals. The Anatomical Record 290:507–513

    PubMed  Google Scholar 

  • Ribak G, Weihs D, Arad Z (2004) How do cormorants counter buoyancy during submerged swimming. Journal of Experimental Biology 207:2101–2114

    PubMed  Google Scholar 

  • Robertson GN, McGee CAS, Dumbarton TC, Croll RP, Smith FM (2007) Development of the swimbladder and its innervation in the Zebrafish, Danio rerio. Journal of Morphology 268:967–985

    PubMed  CAS  Google Scholar 

  • Ross LG (1978) The innervation of the resorptive structures in the swimbladder of a physoclist fish, Pollachius virens (L.). Comparative and Biochemistry Physiology 61C:385–388

    CAS  Google Scholar 

  • Sargent JR (1989) Ether-linked glycerides in marine animals. In: Ackman RG (ed) Marine Biogenic Lipids, Fats, and Oils, Vol. 1. CRC, Florida. pp 175–197

    Google Scholar 

  • Sargent JR, Gatten RR, McIntosh R (1973) The distribution of neutral lipids in shark tissues. Journal of the Marine Biological Association of the United Kingdom. Marine Biological Association of the United Kingdom 53:649–656

    CAS  Google Scholar 

  • Sato K, Naito Y, Kato A, Niizuma Y, Watanuki Y, Charrassin JB, Bost CA, Handrich Y, Le Maho Y (2002) Buoyancy and maximal diving depth in penguins: do they control inhaling air volume? Journal of Experimental Biology 205:1189–1197

    PubMed  Google Scholar 

  • Simons JR (1970) The direction of the thrust produced by the heterocercal tails of two dissimilar elasmobranchs: the Port Jackson shark, Heterodontus portusjacksoni (Meyer), and the piked dogfish, Squalus megalops (Macleay). Journal of Experimental Biology 52:95–107

    Google Scholar 

  • Skrovan RC, Williams TM, Berry PS, Moore PW, Davis RW (1999) The diving physiology of bottlenose dolphins (Tursiops truncatus). II. Biomechanics and changes in buoyancy at depth. Journal of Experimental Biology 202:2749–2761

    PubMed  CAS  Google Scholar 

  • Steen JB (1963a) The physiology of the swimbladder in the eel Anguilla vulgaris. II. The reabsorption of gases. Acta Physiologica Scandinavica 58:138–149

    CAS  Google Scholar 

  • Steen JB (1963b) The physiology of the swimbladder in the eel Anguilla vulgaris. III. The mechanism of gas secretion. Acta Physiologica Scandinavica 59:221–241

    CAS  Google Scholar 

  • Steen JB (1970) The swim bladder as a hydrostatic organ. In: Hoar WS, Randall DJ (eds) Fish Physiology. Academic, New York, pp 413–443

    Google Scholar 

  • Stokes MD, Holland ND (1995) Ciliary hovering in larval lancelets (=Amphioxus). The Biological Bulletin 188:231–233

    Google Scholar 

  • Stray-Pedersen S (1970) Vascular responses induced by drugs and by vagal stimulation in the swimbladder of the eel, Anguilla vulgaris. Comparative and General Pharmacology 1:358–364

    PubMed  CAS  Google Scholar 

  • Stray-Pedersen S, Nicolaysen A (1975) Qualitative and quantitative studies of the capillary structure in the rete mirabile of the eel, Anguilla vulgaris L. Acta Physiologica Scandinavica 94:339–357

    PubMed  CAS  Google Scholar 

  • Suetsugu K, Ohta S (2004) Functional change in the swimbladder with fish size in Coryphaenoides acrolepis. Deep Sea Research Part I: Oceanographic Research Papers 51:1275–1282

    Google Scholar 

  • Sund T (1977) A mathematical model for counter-current multiplication in the swim bladder. The Journal Physiology 267:679–696

    CAS  Google Scholar 

  • Tocher DR, Sargent JR (1984) Analyses of lipids and fatty acids in ripe roes of some Northwest European marine fish. Lipids 19:492–499

    PubMed  CAS  Google Scholar 

  • Trotter AJ, Battaglene SC, Pankhurst PM (2005) Buoyancy control and diel changes in swim-bladder volume in cultured striped trumpeter (Latris lineata) larvae. Marine Freshwater Research 56:361–370

    Google Scholar 

  • Uhen MD (2007) Evolution of marine mammals: back to the sea after 300 million years. The Anatomical Record 290:514–522

    PubMed  Google Scholar 

  • Uotani I, Fukui A, Osaki K, Ozawa T (2000) Experimental study on the inflation and deflation of gas bladder of Japanese anchovy, Engraulis japonicus larvae. Bulletin of Marine Science 66:97–103

    Google Scholar 

  • Van Vleet ES, Candileri S, McNeillie J, Reinhardt SB, Conkright ME, Zwissler A (1984) Neutral lipid components of eleven species of Caribbean sharks. Comparative and Biochemistry Physiology 79B:549–554

    Google Scholar 

  • Vent RJ, Pickwell GV (1977) Acoustic volume scattering measurements with related biological and chemical observations in the northeastern tropical Pacific. In: Andersen NR, Zahuranec BJ (eds) Oceanic Sound Scattering Prediction. Plenum, New York, pp 697–716

    Google Scholar 

  • Wahlqvist I (1985) Physiological evidence for peripheral ganglionic synapses in adrenergic pathways to the swimbladder of the Atlantic cod, Gadus morhua. Comparative and Biochemistry Physiology 80C:269–272

    Google Scholar 

  • Wallace RA, Selman K (1981) Cellular and dynamic aspects of oocyte growth in teleosts. American Zoology 21:325–343

    Google Scholar 

  • Walsh PJ, Milligan CL (1993) Roles of buffering capacity and pentose phosphate pathway activity in the gas gland of the gulf toadfish Opsanus beta. Journal of Experimental Biology 176:311–316

    CAS  Google Scholar 

  • Webb PW (1990) How does benthic living affect body volume, tissue composition, and density of fishes? Canadian Journal of Zoology 68:1250–1255

    Google Scholar 

  • Webb PM, Crocker DE, Blackwell SB, Costa DP, Le Boeuf BJ (1998) Effects of buoyancy on the diving behavior of northern elephant seals. Journal of Experimental Biology 201:2349–2358

    PubMed  CAS  Google Scholar 

  • Williams TM, Davis RW, Fuiman LA, Francis J, Le Boeuf BJ, Horning M, Calambokidis J, Croll DA (2000) Sink or swim: strategies for cost-efficient diving by marine mammals. Science 288:133–136

    PubMed  CAS  Google Scholar 

  • Wilson RP, Hustler K, Ryan PG, Burger AE, Nöldeke EC (1992) Diving birds in cold water: do Archimedes and Boyle determine energetic costs? The American Naturalist 140:179–200

    Google Scholar 

  • Wittenberg JB, Schwend MJ, Wittenberg BA (1964) The secretion of oxygen into the swim-bladder of fish. III. The role of carbon dioxide. The Journal of General Physiology 48:337–355

    PubMed  CAS  Google Scholar 

  • Wittenberg JB, Copeland DE, Haedrich RL, Child JS (1980) The swimbladder of deep-sea fish: the swimbladder wall is a lipid-rich barrier to oxygen diffusion. Journal of the Marine Biological Association of the United Kingdom. Marine Biological Association of the United Kingdom 60:263–276

    CAS  Google Scholar 

  • Woodland WNF (1911) On the structure and function of the gas glands and retia mirabilia associated with the gas bladder of some teleostean fishes. Proceedings of the Zoological Society London 1:183–248

    Google Scholar 

  • Würtz J, Salvenmoser W, Pelster B (1999) Localization of carbonic anhydrase in swimbladder tissue of European eel (Anguilla anguilla) and perch (Perca fluviatilis). Acta Physiologica Scandinavica 165:219–224

    PubMed  Google Scholar 

  • Yancey PH, Lawrence-Berrey R, Douglas MD (1989) Adaptations in mesopelagic fishes. I. Buoyant glycosaminoglycan layers in species without diel vertical migrations. Marine Biology 103:453–459

    CAS  Google Scholar 

  • Yin MC, Blaxter JHS (1987) Temperature, salinity tolerance, and buoyancy during early development and starvation of Clyde and North Sea herring, cod, and flounder larvae. Journal of Experimental Marine Biology and Ecology 107:279–290

    Google Scholar 

  • Yokoyama T, Chong KT, Miyazaki G, Morimoto H, Shih DTB, Unzai S, Tame JRH, Park SY (2004) Novel mechanisms of pH sensitivity in Tuna hemoglobin: a structural explanation of the Root effect. The Journal Biology Chemistry 279:28632–28640

    CAS  Google Scholar 

  • Zwerger P, Nimeth K, Würtz J, Salvenmoser W, Pelster B (2002) Development of the swimbladder in the European eel (Anguilla anguilla). Cell Tissue Research 307:155–164

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Pelster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pelster, B. (2009). Buoyancy Control in Aquatic Vertebrates. In: Glass, M., Wood, S. (eds) Cardio-Respiratory Control in Vertebrates. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-93985-6_4

Download citation

Publish with us

Policies and ethics