Skip to main content

Disaggregation Analysis and Statistical Learning: An Integrated Framework for Multicriteria Decision Support

  • Chapter
  • First Online:

Part of the book series: Applied Optimization ((APOP,volume 103))

Abstract

Disaggregation methods have become popular in multicriteria decision aiding (MCDA) for eliciting preferential information and constructing decision models from decision examples. From a statistical point of view, data mining and machine learning are also involved with similar problems, mainly with regard to identifying patterns and extracting knowledge from data. Recent research has also focused on the introduction of specific domain knowledge in machine learning algorithms. Thus, the connections between disaggregation methods in MCDA and traditional machine learning tools are becoming stronger. In this chapter the relationships between the two fields are explored. The differences and similarities between the two approaches are identified and a review is given regarding the integration of the two fields.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.A. Abbass. Speeding up backpropagation using multiobjective evolutionary algorithms. Neural Computation, 15(11):2705–2726, 2003.

    Article  Google Scholar 

  2. Y.S. Abu-Mostafa. Learning from hints in neural networks. Journal of Complexity, 6(2):192– 198, 1990.

    Article  Google Scholar 

  3. Y.S. Abu-Mostafa. Machines that learn from hints. Scientific American, 272(4):64–69, 1995.

    Article  Google Scholar 

  4. R. Agrawal, T. Imieli´nski, and A. Swami. Mining association rules between sets of items in large databases. In P. Buneman and S. Jajodia, editors, Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, pages 207–216, New York, NY, 1993. ACM.

    Google Scholar 

  5. S. Angilella, S. Greco, and B. Matarazzo. Non-additive robust ordinal regression: A multiple criteria decision model based on the Choquet integral. European Journal of Operational Research, 201:277–288, 2010.

    Article  Google Scholar 

  6. O.U. Araz. A simulation based multi-criteria scheduling approach of dual-resource constrained manufacturing systems with neural networks. Lecture Notes in Computer Science, 3809:1047–1052, 2005.

    Article  Google Scholar 

  7. N.P. Archer and S. Wang. Application of the back propagation neural network algorithm with monotonicity constraints for two-group classification problems. Decision Sciences, 24(1):60–75, 1993.

    Article  Google Scholar 

  8. C.A. Bana e Costa and J-C. Vansnick. A critical analysis of the eigenvalue method used to derive priorities in AHP. European Journal of Operational Research, 187(3):1422–1428, 2008.

    Google Scholar 

  9. J.M. Bates and Granger C.W.J. The combination of forecasts. Operational Research Quarterly, 20(4):451–468, 1969.

    Google Scholar 

  10. M. Behzadian, R.B. Kazemzadeh, A. Albadvi, and M. Aghdasi. PROMETHEE: A comprehensive literature review on methodologies and applications. European Journal of Operational Research, 2009. In press.

    Google Scholar 

  11. N. Belacel, H. Bhasker Raval, and A.P. Punnenc. Learning multicriteria fuzzy classification method PROAFTN from data. Computers and Operations Research, 34:1885–1898, 2007.

    Article  Google Scholar 

  12. A. Ben-David, L. Sterling, and Y.-H. Pao. Learning and classification of monotonic ordinal concepts. Computational Intelligence, 5:45–49, 1989.

    Article  Google Scholar 

  13. M. Beuthe and G. Scannella. Comparative analysis of UTA multicriteria methods. European Journal of Operational Research, 130:246–262, 2001.

    Article  Google Scholar 

  14. J-P. Brans and B. Mareschal. PROMETHEE methods. In J. Figueira, S. Greco, and M. Ehrgott, editors, Multiple Criteria Decision Analysis-State of the Art Surveys, pages 163–195. Springer, Boston, 2005.

    Google Scholar 

  15. L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

    Google Scholar 

  16. L. Breiman. Random forests. Machine Learning, 45:5–32, 2001.

    Google Scholar 

  17. L. Breiman. Statistical modeling: The two cultures. Statistical Science, 16:199–231, 2001.

    Article  Google Scholar 

  18. L. Breiman, J.H. Friedman, R.A. Olsen, and C.J. Stone. Classification and Regression Trees. Wadsworth, Pacific Grove, CA, 1984.

    Google Scholar 

  19. V. Bugera, H. Konno, and S. Uryasev. Credit cards scoring with quadratic utility function. Journal of Multi-Criteria Decision Analysis, 11:197–211, 2002.

    Article  Google Scholar 

  20. C. Campbell. Kernel methods: A survey of current techniques. Neurocomputing, 48:63–84, 2002.

    Article  Google Scholar 

  21. J. Chen and S. Lin. An interactive neural network-based approach for solving multiple criteria decision-making problems. Decision Support Systems, 36:137–146, 2003.

    Article  Google Scholar 

  22. M-C. Chen. Ranking discovered rules from data mining with multiple criteria by data envelopment analysis. Expert Systems with Applications, 33:1110–1116, 2007.

    Google Scholar 

  23. Y. Chen, K.W. Hipel, and M.D. Kilgour. Multiple-criteria sorting using case-based distance models with an application in water resources management. IEEE Transactions on Systems, Man, and Cybernetics-Part A, 37(5):680–691, 2007.

    Article  Google Scholar 

  24. Y. Chen, M.D. Kilgour, and K.W. Hipel. A case-based distance method for screening in multiple-criteria decision aid. Omega, 36(3):373–383, 2008.

    Article  Google Scholar 

  25. D.H. Choi, B.S. Ahn, and S.H. Kim. Prioritization of association rules in data mining: Multiple criteria decision approach. Expert Systems with Applications, 29(4):876878, 2005.

    Google Scholar 

  26. P. Das. In search of best alternatives: a topsis driven mcdm procedure for neural network modeling. Neural Computing and Applications, 2009. In press.

    Google Scholar 

  27. J. Dembczynski, W. Kotlowski, and R. Slowinski. Ensemble of decision rules for ordinal classification with monotonicity constraints. Lecture Notes in Computer Science, 5009:260– 267, 2008.

    Article  Google Scholar 

  28. K. Dembczynski, W. Kotlowski, and R. Slowinski. Additive preference model with piecewise linear components resulting from dominance-based rough set approximations. Lecture Notes in Computer Science, 4029:499–508, 2006.

    Article  Google Scholar 

  29. L. Dias, V. Mousseau, J. Figueira, and J. Cl´ımaco. An aggregation/disaggregation approach to obtain robust conclusions with ELECTRE TRI. European Journal of Operational Research, 138(2):332–348, 2002.

    Google Scholar 

  30. L.C. Dias and V. Mousseau. Inferring Electre’s veto-related parameters from outranking examples. European Journal of Operational Research, 170(1):172–191, 2006.

    Article  Google Scholar 

  31. T.G. Dietterich. Ensemble methods in machine learning. Lecture Notes in Computer Science, 1857:1–15, 2000.

    Article  Google Scholar 

  32. J. Dombi and A. Zsiros. Learning multicriteria classification models from examples: Decision rules in continuous space. European Journal of Operational Research, 160:663–675, 2005.

    Article  Google Scholar 

  33. M. Doumpos, Y. Marinakis, M. Marinaki, and C. Zopounidis. An evolutionary approach to construction of outranking models for multicriteria classification: The case of the ELECTRE TRI method. European Journal of Operational Research, 199(2):496–505, 2009.

    Article  Google Scholar 

  34. M. Doumpos and C. Zopounidis. Multicriteria Decision Aid Classification Methods. Springer, New York, 2002.

    Google Scholar 

  35. M. Doumpos and C. Zopounidis. On the development of an outranking relation for ordinal classification problems: An experimental investigation of a new methodology. Optimization Methods and Software, 17(2):293–317, 2002.

    Article  Google Scholar 

  36. M. Doumpos and C. Zopounidis. A multicriteria classification approach based on pairwise comparisons. European Journal of Operational Research, 158:378–389, 2004.

    Article  Google Scholar 

  37. M. Doumpos and C. Zopounidis. Regularized estimation for preference disaggregation in multiple criteria decision making. Compututational Optimization and Applications, 38:61– 80, 2007.

    Article  Google Scholar 

  38. R.M. Everson and J.E. Fieldsend. Multi-class roc analysis from a multi-objective optimisation perspective. Pattern Recognition Letters, 27:918–927, 2006.

    Article  Google Scholar 

  39. T. Evgeniou, C. Boussios, and G. Zacharia. Generalized robust conjoint estimation. Marketing Science, 24(3):415–429, 2005.

    Google Scholar 

  40. E. Fernandez, J. Navarroa, and S. Bernal. Multicriteria sorting using a valued indifference relation under a preference disaggregation paradigm. European Journal of Operational Research, 198(2):602–609, 2009.

    Article  Google Scholar 

  41. J.R. Figueira, S. Greco, and R. Slowinski. Building a set of additive value functions representing a reference preorder and intensities of preference: GRIP method. European Journal of Operational Research, 195:460–486, 2009.

    Article  Google Scholar 

  42. P. Fortemps, S. Greco, and R. Slowinski. Multicriteria decision support using rules that represent rough-graded preference relations. European Journal of Operational Research, 188:206–223, 2008.

    Article  Google Scholar 

  43. Y. Freund. Boosting a weak learning algorithm by majority. Information and Computation, 121(2):256–285, 1995.

    Article  Google Scholar 

  44. Y. Freund, R. Iyer, R.E. Schapire, and Y. Singer. An efficient boosting algorithm for combining preferences. Journal of Machine Learning Research, 4:933–969, 2003.

    Article  Google Scholar 

  45. J. Gama and P. Brazdil. Cascade generalization. Machine Learning, 41:315–343, 2000.

    Article  Google Scholar 

  46. J. Garc´ıa-Nieto, E. Alba, L. Jourdan, and E. Talbi. Sensitivity and specificity based multiobjective approach for feature selection: Application to cancer diagnosis. Information Processing Letters, 109(16):887–896, 2009.

    Google Scholar 

  47. N. Garc´ıa-Pedrajas and D. Ortiz-Boyer. A cooperative constructive method for neural networks for pattern recognition. Pattern Recognition, 40:8098, 2007.

    Google Scholar 

  48. M.R. Gholamian, S.M.T. Fatemi Ghomi, and M. Ghazanfari. A hybrid intelligent system for multiobjective decision making problems. Computers and Industrial Engineering, 51:26–43, 2006.

    Article  Google Scholar 

  49. Y. Goletsis, C. Papaloukas, D.I. Fotiadis, A. Likas, and L.K. Michalis. Automated ischemic beat classification using genetic algorithms and multicriteria decision analysis. IEEE Transactions on Biomedical Engineering, 51(10):1717–1725, 2004.

    Article  Google Scholar 

  50. J. Gonzalez-Pachon and C. Romero. A method for dealing with inconsistencies in pairwise comparisons. European Journal of Operational Research, 158(2):351–361, 2004.

    Article  Google Scholar 

  51. M. Grabisch, I. Kojadinovic, and P. Meyer. A review of methods for capacity identification in Choquet integral based multi-attribute utility theory: Applications of the Kappalab R package. European Journal of Operational Research, 186:766–785, 2008.

    Article  Google Scholar 

  52. S. Greco, B. Matarazzo, and R. Slowinski. Rough approximation of a preference relation by dominance relations. European Journal of Operational Research, 117:63–83, 1999.

    Article  Google Scholar 

  53. S. Greco, B. Matarazzo, and R. Slowinski. Rough sets theory for multicriteria decision analysis. European Journal of Operational Research, 129:1–47, 2001.

    Article  Google Scholar 

  54. S. Greco, B. Matarazzo, and R. Slowinski. Rough sets methodology for sorting problems in presence of multiple attributes and criteria. European Journal of Operational Research, 138:247–259, 2002.

    Article  Google Scholar 

  55. S. Greco, B. Matarazzo, and R. Slowinski. Axiomatic characterization of a general utility function and its particular cases in terms of conjoint measurement and rough-set decision rules. European Journal of Operational Research, 158(2):271–292, 2004.

    Article  Google Scholar 

  56. S. Greco, V. Mousseau, and R. Slowinski. Ordinal regression revisited: Multiple criteria ranking using a set of additive value functions. European Journal of Operational Research, 191(2):415–435, 2008.

    Article  Google Scholar 

  57. S. Greco, R. Slowinski, and Y. Yao. Bayesian decision theory for dominance-based rough set approach. In J. Yao, P. Lingras, W-Z. Wu, M. Szczuka, N.J. Cercone, and S. ´ ¸zak, editors,Rough Sets and Knowledge Technology, pages 134–141. Springer, Berlin, 2007.

    Google Scholar 

  58. M. Guijarro and G. Pajares. On combining classifiers through a fuzzy multicriteria decision making approach: Applied to natural textured images. Expert Systems with Applications, 36:7262–7269, 2009.

    Article  Google Scholar 

  59. A. Guill´en, H. Pomares, J. Gonz´alez, I. Rojas, O. Valenzuela, and B. Prieto. Parallel multi-objective memetic rbfnns design and feature selection for function approximation problems. Neurocomputing, 72(16-18):3541–3555, 2009.

    Google Scholar 

  60. P.L. Hammer, A. Kogan, B. Simeone, and S. Szedm´ak. Pareto-optimal patterns in logical analysis of data. Discrete Applied Mathematics, 144:79–102, 2004.

    Google Scholar 

  61. D. Hand, H. Mannila, and P. Smyth. Principles of Data Mining. MIT Press, Cambridge, 2001.

    Google Scholar 

  62. T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, New York, 2001.

    Google Scholar 

  63. S. Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall, Singapore, 2nd edition, 1999.

    Google Scholar 

  64. R. Herbrich, T. Graepel, and K. Obermayer. Large margin rank boundaries for ordinal regression. In A.J. Smola, P.L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 115–132. MIT Press, Cambridge, MA, 2000.

    Google Scholar 

  65. T. Hofmann, B. Schölkopf, and A.J. Smola. Kernel methods in machine learning. The Annals of Statistics, 36(3):1171–1220, 2008.

    Google Scholar 

  66. A. Howard and T. Jebara. Learning monotonic transformations for classification. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20, pages 681–688. MIT Press, Cambridge, MA, 2008.

    Google Scholar 

  67. Y-C. Hu. Bankruptcy prediction using ELECTRE-based single-layer perceptron. Neurocomputing, 72:3150–3157, 2009.

    Google Scholar 

  68. B. Huang, B. Buckley, and T.-M. Kechadi. Multi-objective feature selection by using NSGAII for customer churn prediction in telecommunications. Expert Systems with Applications, 2007. In press.

    Google Scholar 

  69. E. H¨ullermeier and K. Brinker. Learning valued preference structures for solving classification problems. Fuzzy Sets and Systems, 159(18):2337–2352, 2008.

    Google Scholar 

  70. E. H¨ullermeier and S. Vanderlooy. Combining predictions in pairwise classification: An optimal adaptive voting strategy and its relation to weighted voting. Pattern Recognition, 43(1):128–142, 2010.

    Google Scholar 

  71. E. Jacquet-Lagr`eze and Y. Siskos. Assessing a set of additive utility functions for multi-criteria decision making: The UTA method. European Journal of Operational Research, 10:151–164, 1982.

    Google Scholar 

  72. E. Jacquet-Lagr`eze and Y. Siskos. Preference disaggregation: 20 years of MCDA experience. European Journal of Operational Research, 130:233–245, 2001.

    Google Scholar 

  73. T. Jiao, J. Peng, and T. Terlaky. A confidence voting process for ranking problems based on support vector machines. Annals of Operations Research, 166:23–38, 2009.

    Article  Google Scholar 

  74. J. Jin. Multi-Objective Machine Learning. Springer, Berlin Heidelberg, 2006.

    Google Scholar 

  75. T. Joachims. Optimizing search engines using clickthrough data. In ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), pages 133–142, 2002.

    Google Scholar 

  76. G.V. Kass. An exploratory technique for investigating large quantities of categorical data. Journal of Applied Statistics, 29:119–127, 1980.

    Article  Google Scholar 

  77. R.L. Keeney and H. Raiffa. Decisions with Multiple Objectives: Preferences and Value Trade-offs. Cambridge University Press, Cambridge, 1993.

    Google Scholar 

  78. I. Kojadinovic. Estimation of the weights of interacting criteria from the set of profiles by means of information-theoretic functionals. European Journal of Operational Research, 155:741–751, 2004.

    Article  Google Scholar 

  79. I. Kojadinovic. Minimum variance capacity identification. European Journal of Operational Research, 177:498–514, 2007.

    Article  Google Scholar 

  80. M. Köksalan and S.B. Ozpeynirci. An interactive sorting method for additive utility functions. Computers & Operations Research, 36(9):2565–2572, 2009.

    Google Scholar 

  81. M. Köksalan and C. Ulu. An interactive approach for placing alternatives in preference classes. European Journal of Operational Research, 144:429–439, 2003.

    Google Scholar 

  82. W. Kotlowski and R. Slowinski. Rule learning with monotonicity constraints. In ICML ’09: Proceedings of the 26th Annual International Conference on Machine Learning, pages 537–544, New York, NY, USA, 2009. ACM.

    Google Scholar 

  83. K. Kottathra and Y. Attikiouzel. A novel multicriteria optimization algorithm for the structure determination of multilayer feedforward neural networks. Journal of Network and Computer Applications, 19:135–147, 1996.

    Article  Google Scholar 

  84. G. Kou, X. Liu, Y. Peng, Y. Shi, M. Wise, and W. Xu. Multiple criteria linear programming approach to data mining: Models, algorithm designs and software development. Optimization Methods and Software, 18(4):453–473, 2003.

    Article  Google Scholar 

  85. H. Li and J. Sun. Hybridizing principles of the ELECTRE method with case-based reasoning for data mining: ELECTRE-CBR-I and ELECTRE-CBR-II. European Journal of Operational Research, 197(1):214–224, 2009.

    Article  Google Scholar 

  86. H. Li and J. Sun. Business failure prediction using hybrid2 case-based reasoning (H2CBR). Computers and Operations Research, 37(1):137–151, 2010.

    Article  Google Scholar 

  87. Y. Li, K. Ida, M. Gen, and R. Kobuchi. Neural network approach for multicriteria solid transportation problem. Computers and Industrial Engineering, 33(3-4):465–468, 1997.

    Article  Google Scholar 

  88. J. Ma, Z.P. Fan, Y.P. Jiang, J.Y. Mao, and L. Ma. A method for repairing the inconsistency of fuzzy preference relations. Fuzzy Sets and Systems, 157(1):20–33, 2006.

    Article  Google Scholar 

  89. B. Malakooti and V. Raman. Clustering and selection of multiple criteria alternatives using unsupervised and supervised neural networks. Journal of Intelligent Manufacturing, 11:435– 451, 2000.

    Article  Google Scholar 

  90. B. Malakooti and Y. Zhou. A recursive ann for solving adaptive multiple criteria problems. Pure Mathematics and Applications Series C, 2(2-4):165–176, 1991.

    Google Scholar 

  91. B. Malakooti and Y.Q. Zhou. Feedforward artificial neural networks for solving discrete multiple criteria decision making problems. Management Science, 40(11):1542–1561, 1994.

    Article  Google Scholar 

  92. O.L. Mangasarian and E.W. Wild. Nonlinear knowledge-based classification. IEEE Transactions on Neural Networks, 19(10):1826–1832, 2008.

    Article  Google Scholar 

  93. J.-L. Marichal and M. Roubens. Determination of weights of interacting criteria from a reference set. European Journal of Operational Research, 124:641–650, 2000.

    Article  Google Scholar 

  94. J-M. Martel and B. Matarazzo. Other outranking approaches. In J. Figueira, S. Greco, and M. Ehrgott, editors, Multiple Criteria Decision Analysis-State of the Art Surveys, pages 197–262. Springer, Boston, 2005.

    Google Scholar 

  95. P.R. McMullen. A kohonen self-organizing map approach to addressing a multiobjective mixed-model JIT sequencing problem. International Journal of Production Economics, 72:59–71, 2001.

    Article  Google Scholar 

  96. V. Mousseau, L.C. Dias, and J. Figueira. Dealing with inconsistent judgments in multiple criteria sorting models. 4OR, 4(3):145–158, 2006.

    Google Scholar 

  97. V. Mousseau, L.C. Dias, J. Figueira, C. Gomes, and J.N. Cl´ımaco. Resolving inconsistencies among constraints on the parameters of an MCDA model. European Journal of Operational Research, 147(1):72–93, 2003.

    Google Scholar 

  98. V. Mousseau, J. Figueira, and J.-Ph. Naux. Using assignment examples to infer weights for ELECTRE TRI method: Some experimental results. European Journal of Operational Research, 130:263–275, 2001.

    Article  Google Scholar 

  99. V. Mousseau and R. Slowinski. Inferring an ELECTRE-TRI model from assignment examples. Journal of Global Optimization, 12(2):157–174, 1998.

    Article  Google Scholar 

  100. H. Nakayama, Y.B. Yun, T. Asada, and M. Yoon. MOP/GP models for machine learning. European Journal of Operational Research, 166:756–768, 2005.

    Article  Google Scholar 

  101. A. Ngo The and V. Mousseau. Using assignment examples to infer category limits for the ELECTRE TRI method. Journal of Multi-Criteria Decision Analysis, 11:2943, 2002.

    Google Scholar 

  102. Y. Ni, C. Huang, and S. Kokot. Application of multivariate calibration and artificial neural networks to simultaneous kinetic-spectrophotometric determination of carbamate pesticides. Chemometrics and Intelligent Laboratory Systems, 71:177193, 2004.

    Article  Google Scholar 

  103. L.S. Oliveira, M. Morita, and R. Sabourin. Feature selection for ensembles applied to handwriting recognition. International Journal on Document Analysis and Recognition, 8(4):262– 279, 2006.

    Article  Google Scholar 

  104. K-M. Osei-Bryson. Evaluation of decision trees: A multi-criteria approach. Computers and Operations Research, 31:1933–1945, 2004.

    Google Scholar 

  105. K-M. Osei-Bryson. Post-pruning in decision tree induction using multiple performance measures. Computers and Operations Research, 34:3331–3345, 2007.

    Google Scholar 

  106. M. Ozt¨urk, A. Tsouki`as, and Ph. Vincke. Preference modelling. In J. Figueira, S. Greco, and M. Ehrgott, editors, Multiple Criteria Decision Analysis-State of the Art Surveys, pages 27–71. Springer, Boston, 2005.

    Google Scholar 

  107. C.-P. Park and I. Han. A case-based reasoning with the feature weights derived by analytic hierarchy process for bankruptcy prediction. Expert Systems with Applications, 23(3):255– 264, 2002.

    Article  Google Scholar 

  108. Z. Pawlak. Rough sets. International Journal of Information and Computer Sciences, 11:341–356, 1982.

    Article  Google Scholar 

  109. Z. Pawlak and R. Slowinski. Rough set approach to multi-attribute decision analysis. European Journal of Operational Research, 72:443–459, 1994.

    Article  Google Scholar 

  110. R. Potharst and A.J. Feelders. Classification trees for problems with monotonicity constraints. ACM SIGKDD Explorations Newsletter, 4(1):1–10, 2002.

    Article  Google Scholar 

  111. L. Qu and Y. Chen. A hybrid MCDM method for route selection of multimodal transportation network. Lecture Notes in Computer Science, 5263:374–383, 2008.

    Article  Google Scholar 

  112. J.R. Quinlan. Induction of decision trees. Machine Learning, 1:81–106, 1986.

    Google Scholar 

  113. J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, Los Altos, California, 1993.

    Google Scholar 

  114. K.S. Raju, D.N. Kumar, and L. Duckstein. Artificial neural networks and multicriterion analysis for sustainable irrigation planning. Computers and Operations Research, 33:1138– 1153, 2006.

    Article  Google Scholar 

  115. B. Roy. The outranking approach and the foundations of ELECTRE methods. Theory and Decision, 31:49–73, 1991.

    Article  Google Scholar 

  116. B. Roy. Multicriteria Methodology for Decision Aiding. Springer, New York, 1996.

    Google Scholar 

  117. T.L. Saaty. Fundamentals of the Analytic Hierarchy Process. RWS Publications, Pittsburgh, PA, 2006.

    Google Scholar 

  118. R.E. Schapire, Y. Freund, P. Bartlett, and W.S. Lee. Boosting the margin: A new explanation for the effectiveness of voting methods. The Annals of Statistics, 26(5):1651–1686, 1998.

    Article  Google Scholar 

  119. B. Schölkopf and A. Smola. Learning with Kernels: Support Vector Machines, Regularization, Optimization and Beyond. MIT Press, Cambridge, 2002.

    Google Scholar 

  120. B. Schölkopf and A.J. Smola. Learning with Kernels: Support Vector Machines, Regularization, Optimization and Beyond. MIT Press, Cambridge, Massachusetts, 2002.

    Google Scholar 

  121. J.-B. Sheu. A hybrid neuro-fuzzy analytical approach to mode choice of global logistics management. European Journal of Operational Research, 189(3):971–986, 2008.

    Article  Google Scholar 

  122. Y. Shimizu, Y. Tanaka, and A. Kawada. Multi-objective optimization system, MOON2 on the internet. Computers and Chemical Engineering, 28:821–828, 2004.

    Article  Google Scholar 

  123. J. Sill. Monotonic networks. In M.I. Jordan, M.J. Kearns, and S.A. Solla, editors, Advances in Neural Information Processing Systems 10, pages 661–667. MIT Press, Cambridge, MA, 1997.

    Google Scholar 

  124. J. Siskos and D.K. Despotis. A DSS oriented method for multiobjective linear programming problems. Decision Support Systems, 5:47–55, 1989.

    Article  Google Scholar 

  125. J. Siskos, E. Grigoroudis, and N.F. Matsatsinis. UTA methods. In J. Figueira, S. Greco, and M. Ehrgott, editors, Multiple Criteria Decision Analysis-State of the Art Surveys, pages 297–343. Springer, Boston, 2005.

    Google Scholar 

  126. R. Slowinski and J. Stefanowski. Rough classification with valued closeness relation. In E. Diday, Y. Lechevallier, M. Schader, P. Bertrand, and B. Burtschy, editors, New Approaches in Classification and Data Analysis, pages 482–489. Springer, Berlin, 1994.

    Google Scholar 

  127. A. Stam, M. Sun, and M. haines. Artificial neural network representations for hierarchical preference structures. Computers and Operations Research, 23(12):1191–1201, 1996.

    Google Scholar 

  128. I. Steinwart and A. Christmann. Support Vector Machines. Springer, New York, 2008.

    Google Scholar 

  129. R.E. Steuer and E.U. Choo. An interactive weighted Tchebycheff procedure for multiple objective programming. Mathematical Programming, 26(1):326–344, 1983.

    Article  Google Scholar 

  130. M. Sun, A. Stam, and R.E. Steuer. Solving multiple objective programming problems using feed-forward artificial neural networks: The interactive FFANN procedure. Management Science, 42(6):835–849, 1996.

    Article  Google Scholar 

  131. M. Sun, A. Stam, and R.E. Steuer. Interactive multiple objective programming using Tchebycheff programs and artificial neural networks. Computers and Operations Research, 27(78):601–620, 2000.

    Article  Google Scholar 

  132. R.A. Teixeira, A.P. Braga, R.H.C. Takahashi, and R.R. Saldanha. Improving generalization of mlps with multi-objective optimization. Neurocomputing, 35(14):189194, 2000.

    Google Scholar 

  133. G.G. Towell and J.W. Shavlik. Knowledge-based artificial neural networks. Artificial Intelligence, 70(1-2):119–165, 1994.

    Google Scholar 

  134. R. van de Kamp, A. Feelders, and N. Barile. Isotonic classification trees. Lecture Notes in Computer Science, 5772:405–416, 2009.

    Article  Google Scholar 

  135. V.N. Vapnik. An overview of statistical learning theory. IEEE Transactions on Neural Networks, 10(5):988–999, 1999.

    Article  Google Scholar 

  136. V.N. Vapnik. The Nature of Statistical Learning Theory. Springer, New York, 2nd edition, 2000.

    Google Scholar 

  137. M. Velikova, H. Daniels, and A. Feelders. Mixtures of monotone networks for prediction. International Journal of Computational Intelligence, 3(3):205–214, 2006.

    Google Scholar 

  138. W. Waegeman, B. De Baets, and B. Boullart. Kernel-based learning methods for preference aggregation. 4OR, 7:169–189, 2009.

    Google Scholar 

  139. J. Wang. A neural network approach to modeling fuzzy preference relations for multiple criteria decision making. Computers and Operations Research, 21(9):991–1000, 1994.

    Article  Google Scholar 

  140. J. Wang. A neural network approach to multiple criteria decision making based on fuzzy preference information. Information Sciences, 78:293–302, 1994.

    Article  Google Scholar 

  141. J. Wang and B. Malakooti. A feedforward neural network for multiple criteria decision making. Computers and Operations Research, 19(2):151–167, 1992.

    Article  Google Scholar 

  142. J. Wang, J.-Q. Yang, and H. Lee. Multicriteria order acceptance decision support in over-demanded job shops: A neural network approach. Mathematical and Computer Modelling, 19(5):1–19, 1994.

    Article  Google Scholar 

  143. S. Wang and N.P. Archer. A neural network technique in modeling multiple criteria multiple person decision making. Computers and Operations Research, 21(2):127–142, 1994.

    Article  Google Scholar 

  144. Y. Wang. Multicriteria neural network approach to turbulent image reconstruction. Optics Communications, 143:279–286, 1997.

    Article  Google Scholar 

  145. D.H. Wolpert. Stacked generalization. Neural Networks, 5:241–259, 1992.

    Article  Google Scholar 

  146. D.H. Wolpert. The existence of a priori distinctions between learning algorithms. Neural Computation, 8(7):1391–1420, 1996.

    Article  Google Scholar 

  147. D.H. Wolpert. The lack of a priori distinctions between learning algorithms. Neural Computation, 8(7):1341–1390, 1996.

    Article  Google Scholar 

  148. D.H. Wolpert and W.G. Macready. No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1(1):67–82, 1997.

    Article  Google Scholar 

  149. Y. Zhang and P.I. Rockett. Domain-independent feature extraction for multi-classification using multi-objective genetic programming. Pattern Analysis and Applications, 2009. In press.

    Google Scholar 

  150. C. Zopounidis and M. Doumpos. Building additive utilities for multi-group hierarchical discrimination: The MHDIS method. Optimization Methods and Software, 14(3):219–240, 2000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Doumpos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Doumpos, M., Zopounidis, C. (2010). Disaggregation Analysis and Statistical Learning: An Integrated Framework for Multicriteria Decision Support. In: Zopounidis, C., Pardalos, P. (eds) Handbook of Multicriteria Analysis. Applied Optimization, vol 103. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92828-7_7

Download citation

Publish with us

Policies and ethics