
J. Gulliksen et al. (Eds.): EIS 2007, LNCS 4940, pp. 483–500, 2008.

On the Process of Software Design: Sources of
Complexity and Reasons for Muddling through

Morten Hertzum

Computer Science, Roskilde University
Roskilde, Denmark
mhz@ruc.dk

Abstract. Software design is a complex undertaking. This study delineates and
analyses three major constituents of this complexity: the formative element en-
tailed in articulating and reaching closure on a design, the progress imperative
entailed in making estimates and tracking status, and the collaboration chal-
lenge entailed in learning within and across projects. Empirical data from two
small to medium-size projects illustrate how practicing software designers
struggle with the complexity induced by these constituents and suggest implica-
tions for user-centred design. These implications concern collaborative ground-
ing, long-loop learning, and the need for a more managed design process while
acknowledging that methods are not an alternative to the project knowledge
created, negotiated, and refined by designers. Specifically, insufficient collabo-
rative grounding will cause project knowledge to gradually disintegrate, but the
activities required to avoid this may be costly in terms of scarce resources such
as the time of key designers.

Keywords: User-centred design, Design process, Software development, Soft-
ware-project complexity, Muddling through, Collaborative grounding.

1 Introduction

Software design is replete with projects that are cancelled, late, over budget, or result
in systems with fewer features than originally specified [e.g., 5, 20]. Further, large
numbers of systems are rejected by users or produce a merely marginal gain over
former systems and work practices [e.g., 14, 28]. As an example, a recent national
system for the Danish public administration was more than 100% late, more than 50%
over budget, and reduced employee productivity by about 50% for several months
after it was released. Six months after release an expert assessment concluded that
considerable revisions of the system were immediately necessary, increasing the over-
spending to almost 100% compared to the original budget [12]. Troubled projects
come about in spite of concerted efforts to the contrary, and they demonstrate the
complexity of software design. Managing this complexity requires that its core con-
stituents are well-understood.

This study analyses three constituents of software design and illustrates the analy-
sis with empirical data from two projects. Each of the constituents is indicative of

© Springer-Verlag Berlin Heidelberg 2008

_
The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-540-92698-6_37

http://dx.doi.org/10.1007/978-3-540-92698-6_37

484 M. Hertzum

considerable complexity and – unless managed – entails serious risk to successful
project completion. The analysed constituents of software design are:

• The formative element, which concerns articulating and reaching closure on a
design

• The progress imperative, which concerns making estimates and tracking status
• The collaboration challenge, which concerns learning within and across projects

The formative element is at the core of human-computer interaction (HCI) and the
two other constituents are crucial characteristics of the context in which practical HCI
work takes place. Whereas the progress imperative has been acknowledged in much
HCI work, for example the work on discount usability engineering [31], the implica-
tions of the collaboration challenge have not received nearly the same attention. This
study aims to outline implications for user-centred design resulting from an analysis
of the three constituents. For HCI researchers, the study intends to point out issues
that may seem mundane but nevertheless hamper real-world projects, at least small to
medium-size projects. For HCI practitioners, the study identifies some of the prob-
lems and tradeoffs they face in their work, and thereby offers an opportunity for re-
flection and pointers to means of alleviating some of the problems.

2 Empirical Data

To illustrate how practicing software designers approach the three software-design
constituents that are analysed in this paper empirical data were collected from two
software projects. The two projects are small to medium-sized and in this sense repre-
sent the majority of software projects [8, 17]. Neither of the organizations in which
the projects took place follows a mandated design method but they have successfully
completed a range of software projects.

The first project concerns a browser interface to a document-management system.
Over a period of two decades the organization has developed, marketed, and continu-
ously evolved a generic document-management system. The organization has 120
employees and a base of more than a hundred longstanding customers. Thousands of
people use the document-management system on a daily basis. One high-level goal of
this system is to provide professionals, as opposed to secretaries and document clerks,
with easy access to organizational documents. In support of this goal it was decided to
develop a browser interface to the system. The browser-interface project involved
three designers and was successfully completed in seven months. The project was
completed on time and within budget but this was partly achieved by reassessing and
reducing the functionality of the browser interface halfway through the project.

The second project concerns a common user-interface platform developed by an
organization that started by providing consultancy in hydraulic engineering but now
increasingly develops and sells software instead of or along with the consultancy. The
organization has 270 employees and has undertaken projects in more than a hundred
countries. Over a period of three decades the organization has developed a number of
hydraulic models and modelling tools as standalone software applications, but these
applications generally have crude and inconsistent user interfaces and they must be
ported individually to new operating systems. To mitigate these drawbacks a project

 On the Process of Software Design 485

was established to provide a common user interface for the applications and handle
their interaction with the operating system. The project, which involved 10-15 per-
sons, took longer than planned and consumed more resources, but it was eventually
completed.

For both projects two designers – the project manager and a programmer – were in-
terviewed for a total of three hours. The obtained data are retrospective, though both
projects were completed recently. In this sense the empirical studies are like post-project
reviews. The interviews, which were audio recorded and subsequently transcribed, were
loosely structured by a set of guiding questions. These questions concerned the major
difficulties and information needs experienced during the project and the means in place
to handle these information needs and communicate lessons learned. The interviewees’
statements were compared and contrasted for purposes of validation. All interviewees
were for the most part positive about their project but they also raised critical issues.
Toward the end of the interviews, the interviewees were asked about their views on
what had been the most significant risk factors in their project. This part of the inter-
views was based on a walkthrough of the 11-item list of top software-project risks iden-
tified by Schmidt et al. [36].

3 Three Constituents of Software Design

The project knowledge created, utilized, modified, embodied, shared, sought, and
otherwise relied upon by designers must enable them to manage three complex and
interrelated constituents of software design: the formative element, the progress im-
perative, and the collaboration challenge. Mapping these three constituents of soft-
ware design to the lists of top software-project risks identified by Boehm [4] and
Schmidt et al. [36] shows that the three constituents encompass the bulk of complex-
ity that must be managed in software projects (Table 1). Of the 21 top risks on either
of the two lists ten concern the formative element, five the progress imperative, and
three the collaboration challenge. Only three risks, about limitations of technology,
are not covered by the three constituents.

3.1 The Formative Element

The formative element is about articulating and reaching closure on a coherent design.
After discussing this constituent of software design it is illustrated with data from the
two empirical studies.

Articulating and Reaching Closure on a Design. The need for new systems can
manifest itself in manifold ways, such as dissatisfaction with present ways of work-
ing, demands for new outputs, and knowledge of new technological options. This
initial need provides only a vague or high-level specification of what is required from
a new system and, consequently, software design involves a process of articulating
the requirements toward the system in detail. The task-artefact cycle (Fig. 1 [9]) illus-
trates this cyclic and nontrivial process, in which designers respond to user require-
ments by building artefacts, which in turn present or deny possibilities to users. Users’
understanding of their current artefacts is shaped by the tasks for which they are using
the artefacts and, at the same time, their understanding of their tasks is shaped by the

486 M. Hertzum

Table 1. The coverage of the three constituents of software design in terms of the top software-
project risks identified by Boehm [4] and Schmidt et al. [36]

Constituent Boehm’s top-10 [4] Schmidt et al.’s top-11 [36]
The formative
element: articu-
lating and reach-
ing closure on a
design

� Continuing stream of re-
quirements changes
� Developing the wrong

functions and properties
� Developing the wrong user

interface

� Changing scope/objectives
� Misunderstanding the require-

ments
� Lack of frozen requirements
� Lack of adequate user involve-

ment
� Failure to gain user commitment
� Failure to manage end-user

expectations
� Conflicts between user depart-

ments

The progress
imperative: mak-
ing estimates and
tracking status

� Unrealistic schedules and
budgets
� Gold-plating
� Shortfalls in externally

furnished components
� Shortfalls in externally

performed tasks

� Lack of top-management com-
mitment to the project

The collaboration
challenge: learn-
ing within and
across projects

� Personnel shortfalls � Insufficient/inappropriate staff-
ing
� Lack of required knowledge/

skills in the project personnel

Other: limitations
of technology

� Real-time performance
shortfalls
� Straining computer-science

capabilities

� Introduction of new technology

artefacts they currently use. Likewise, designers’ understanding of the technological
options is shaped by their knowledge of tasks that need to be performed and, at the
same time, their understanding of users’ tasks is shaped by the possibilities and re-
strictions of the artefacts they currently know of. Thus, people’s familiarity with cer-
tain artefacts and certain tasks shape their understanding of what their tasks are and
what technology has to offer, and this understanding, in turn, constitutes a perspective
that points to certain technological options and makes people blind toward others
[30]. This makes it inherently difficult for people to transcend their current way of
perceiving things and envision how tasks, users, and technology should interact in
constituting the future use situation.

The information needs inherent in the task-artefact cycle concern three areas of
knowledge [27]: the users’ present work, the technological options, and the new sys-
tem. In a sense, the users’ present work and the technological options are only of

 On the Process of Software Design 487

interest because designers have no direct way of getting information about the new
system and use situation. This is interesting from a project-knowledge point of view
because it points out the massive indirectness of the information-seeking process in
software design. Designers seek information about the users’ present work, as op-
posed to their future work, and the technological options, as opposed to the future
system, because they have no direct way of getting the information they really need.
When designers are asked to design a new system they are, at the same time, pre-
vented from getting crucial information about what properties this new system should
have because people’s familiarity with their present tasks and artefacts blocks their
ability to envision radically new solutions. Further, software projects are frequently
hampered by fluctuating and conflicting requirements because the learning process
inherent in the task-artefact cycle continues throughout the projects and because the
needs of different stakeholders may point toward different designs [4, 10, 36]. Apart
from untangling these issues, which add to the difficulties of reaching convergence on
a common project vision, requirements must not only be articulated they also need
advocates. These advocates can be designers, users, or other people involved in a
project. Eodice et al. [16] divided the requirements in a project they studied into those
with and those without an advocate. They report that whereas virtually all the re-
quirements with an advocate were eventually implemented not a single one of the
requirements without an advocate were implemented.

Potts and Catledge [34] find that the process of reaching closure on the design of a
new system is painfully slow and punctuated by several reorientations of direction.
Lack of an agreed-upon understanding of what a system is to achieve complicates the
development process because it leads to disagreements among designers as to the focus
of the system and the best utilization of their resources. As a result, users may not be
provided with any good system image [32] that presents the system facilities and their
interrelationships in a clear and coherent manner. To provide insight about the use
situation and thereby obtain a good match between user needs and system image pro-
spective users must be actively involved in articulating and reaching closure on a de-
sign [e.g., 3, 18, 19]. At the same time requirements articulation is also a negotiation
process in which designers need some level of control over the scope of projects to be
able to balance their management of the contractual aspect of requirements specifica-
tion against the facilitation of users in an open-ended search for requirements [23].

Browser-Interface Project. Two of the three designers involved in the browser-
interface project had considerable knowledge of the users’ work domain from previous

Fig. 1. Task-artefact cycle

Task

Artefact

RequirementsPossibilities

488 M. Hertzum

projects and could, thus, readily enter into discussions of requirements. The initial fo-
rum for these discussions was an annual two-day customer seminar hosted by the devel-
opment organization to get feedback on released systems and discuss needs and ideas
for new system facilities. For one of these seminars, which are attended by about 300
persons, a free-lance consultant made a prototype of a browser interface. Based on the
feedback and discussions at the seminar it was decided to make the browser interface a
top-priority project. This project was to provide platform-independent access to the
document-management system without the need for installing additional software on
users’ computers. Further, the browser interface should be sufficiently undemanding to
be usable without formal training, in contrast to the primary interface which requires a
two-day course. While these high-level goals were clear from the outset a more detailed
requirements document was never produced. Rather, the designers started coding early
on and kept the evolving design partly in their heads and partly reflected in the code
they produced. The intermediate outcomes of their work, in the form of system proto-
types, were presented to and discussed with a group of user representatives with whom
the designers met 4-5 times during the project. This led to the identification of a series
of more detailed requirements, but the primary interface of the document-management
system provided a default structure that significantly reduced the uncertainty and com-
plexity involved in specifying the browser interface. The presence of the primary inter-
face may, however, have rendered the designers and user representatives blind toward
new possibilities and solutions. In continuation of this, one of the interviewees was
concerned that the user representatives did not experience the prototypes in sufficient
depth at the meetings and that actual use of the released browser interface might, there-
fore, give rise to many new requirements and change requests.

Common-Platform Project. At the overall level the common-platform project had a
clear product vision from the very start, namely to provide a common, state-of-the-art
graphical user interface for the individual hydraulic-engineering applications. Ini-
tially, the key person on the project was knowledgeable about both the hydraulic
engineering that forms the basis for the applications and the user-interface program-
ming that forms the basis for the common platform. This person has, however, left the
organization and the remaining people on the project knew little about hydraulic en-
gineering. Though the project members continually interacted with colleagues knowl-
edgeable about hydraulic engineering this interaction was largely informal and the
outcomes of these interactions remained in the heads of individual project members.
No requirements specification was produced, discussed, iterated, and agreed upon,
and apart from some code-level documentation the only up-to-date design documenta-
tion has been the project members’ personal notes. The absence of systematic user
involvement and requirements analysis provides strong candidate reasons for two of
the three software-project risks identified by the interviewees as particularly relevant
in relation to this project: failure to gain user commitment and failure to manage end-
user expectations. The absence of design documentation such as an agreed-upon re-
quirements specification also entailed that the project members were not supported in
maintaining a shared understanding of the scope and objectives of the project. As a
consequence there was no authoritative source in discussions about the functionality
expected from different software modules and the project members repeatedly experi-
enced difficulties in determining whether and when a module was complete.

 On the Process of Software Design 489

Reasons for Observed Practices. Recommendations about how to articulate and
reach closure on a design include principles such as “early focus on users and tasks”
[18], techniques such as interpretation sessions [3], and artefacts such as requirements
specifications. While such recommendations have been advocated for decades they are
often not followed in practice [18, 34]. In the browser-interface and common-platform
projects the main reasons for using proven design practices only sparingly were:

• Believing high-level project goals are sufficient. High-level goals like “providing
platform-independent access to the document-management system” may provide a
product vision but without complementary details the design is severely under-
specified. Nevertheless, the designers in the two studied projects seemed to con-
sider the high-level goals a satisfactory specification of their work in that they
made no concerted effort to involve prospective users in producing a more detailed
requirements specification.

• Not knowing how to bring about more detailed requirements. The designers
seemed uncertain about how to get detailed requirements information from users
and whether users would be able to provide such information. In the browser-
interface project this uncertainty also included a fear of losing control over the
process; that is, of eliciting requirements that went substantially beyond what they
had the resources to deliver.

• Focusing on the tasks they know best. In a situation characterized by uncertainty
and schedule pressure the designers concentrated on the tasks they knew how to
do, primarily coding. This gave rise to a sense of progress though they were aware
that important activities were being glossed over.

These reasons suggest that if given a structured process of clearly defined tasks for
working systematically with requirements, designers will tend to follow this process
[25]. But until such a process has become an established part of their repertoire many
designers will likely muddle through the activities involved in articulating and reach-
ing closure on a design.

3.2 The Progress Imperative

The progress imperative is about making estimates and tracking project status. After
discussing this constituent of software design it is illustrated with data from the two
empirical studies.

Making Estimates and Tracking Status. DeMarco [13] states that without estimates
software projects cannot be managed. Estimation is a prerequisite for project planning
which, in turn, provides for the coordination and management of design activities.
Accurate estimates are, however, hard to make because the cost and time of develop-
ing both software modules and complete systems depend on multiple, interacting
factors. Considerable experience is required to recognize the factors that warrant
particular attention in a specified situation. Additional complicating factors include
that individual differences in the productivity of experienced designers may be as
large as 25:1 [15] and that requirement changes may necessitate rework. Inaccurate
estimates of development cost and time impede the coordination of activities and
allocation of resources both within and across projects. This may, ultimately, lead to

490 M. Hertzum

badly informed decisions about whether to continue or cancel projects. Consequently,
the task of managing software projects involves that estimates are regularly checked
against actual progress (Fig. 2). Estimates enforce plans by stipulating the amount of
time and other resources allocated to a specified activity and must, at the same time,
preserve realism by allocating enough time and resources to complete the activity.
Conversely, status information enforces realism by accounting for how far the project
has actually progressed and presupposes plans by assuming a shared understanding of
what the outcome of specified activities should be.

Project-completion rates are low in software design [20, 36], and designers may thus
be tempted to make optimistic estimates to avoid project cancellation, or they will
simply direct their early efforts toward producing quick progress rather than spend
their time on the planning that is necessary to make accurate estimates. DeMarco [13]
finds that among software engineers an estimate is generally thought of as “the most
optimistic prediction that has a non-zero probability of coming true”. This leads to
frequent underestimation. With appropriate training designers become better at esti-
mating their work and the tendency to underestimate time and size is reduced, resulting
in a more evenly balanced number of overestimates and underestimates [21]. These
improvements are, however, inconsequential unless used, and it appears that estimates
are often supplanted by performance goals, which are used to create incentives, or
deadlines dictated by market pressures or other considerations external to the design
effort. This implies that a consistent move toward more accurate estimates may require
profound changes at the organizational and project levels in addition to an improve-
ment in individual designers’ ability to estimate their work [26].

Whenever a module is added or revised, ripple effects or previously undetected de-
fects may emerge in other modules. Such changes to the status of modules are hard to
predict and quantify ahead of time. In the absence of good estimation skills individual
estimates may be made by increasing base estimates by a fixed percentage determined
on the basis of accumulated experience. This is the approach taken by for example
Microsoft, which adds 20-50% buffer time to base estimates [11]. Averaged over a
number of activities such coarse-grained approaches may work well, but for individ-
ual activities designers will, at least occasionally, experience deviations that leave
them idle for a period or block further progress on other activities. Organizations
seem to work around these periods of waiting by assigning their designers to more
than one project [33]. This, however, introduces additional dependencies that further
complicate the plan-activity cycle (Fig. 2).

Fig. 2. Plan-activity cycle

Plan

Activities

Estimates Status

 On the Process of Software Design 491

Browser-Interface Project. The major means of managing the browser-interface
project was two milestones. First, a working prototype should be ready for a meeting
with the user representatives halfway through the project. Second, the system should
be released at a fixed date. No tools or other formal means were in place to keep track
of project status and support the designers in judging whether the project was on
schedule. Rather, the designers relied on their personal sense of their progress and on
extensive informal communication. Even formal meetings were few because the three
designers were located close to each other – for part of the project they were in the
same office. The designers’ loose grip on status tracking was particularly evident in
relation to testing. No established procedures for testing were in place and it re-
mained, for example, largely untested whether system response times were acceptable
and how platform-dependent they were. Similarly, the designers had no tools for
managing their collaborative access to the source code, and there were incidents
where they accidentally overwrote each other’s files and thereby lost revisions. In the
gradual process of setting the functionality of the browser interface the designers
made explicit use of a multi-release strategy. That is, the top priority was to meet the
project deadline whereas the functionality of the browser interface was considered
malleable. This multi-release strategy exploited that the organization’s document-
management system already had an established position on the market and a base of
customers that were as interested in being assured that the system grew in directions
they considered relevant as in getting a specific piece of new functionality at a
specific date.

Common-Platform Project. In the common-platform project progress toward satis-
faction of requirements was not tracked systematically. Confidence in estimates
gradually deteriorated and absence of shared agreement about the precise functional-
ity of modules further eroded the basis for assessing module status. Contrary to this,
an automatic mechanism was in place to track status at the code level and make up-
dated versions of the code available to the designers. In total, the modules of the
common-platform project comprise more than a million lines of code. The size of the
code and the number of designers involved created a need for regularly establishing
the code-level status of the modules and checking cross-module compatibility. This
was achieved by a nightly build; that is, every night the latest version of each module
was automatically compiled and linked with all the other modules. Whenever the
nightly build succeeded the designers had a running version of their system. If a mod-
ule contained errors that prevented its compilation or linking, it was automatically
added to an intranet page listing the modules that failed the build, and an auto-
generated email was sent to the designer responsible for the module. Thus, when the
designers arrived at work in the morning they had access to a version of the code that
included all designers’ work up until yesterday evening and they had a complete list
of the modules that failed the build. The nightly builds promoted a work practice in
which people made an effort to check the correctness of their module before they
went home. Further, some tests were run automatically every night with standard data
sets and checks of system output against reference data. Finally, in-code comments
were extracted from the code during the nightly build and a set of intranet pages gen-
erated. These web pages contained documentation of individual functions but rarely

492 M. Hertzum

covered interactions among functions or issues above the function level. Thus, while
this documentation was regenerated every day it was insufficient as a means of mak-
ing sense of the code. However, little design documentation exists apart from these
web pages. The main reason for this is that the project group was under an unrelenting
pressure to produce progress, and to be perceived as productive a designer had to be
writing source code, not documentation. For similar reasons the status information
resulting from the nightly builds was not accompanied by careful estimation and re-
estimation of activities.

Reasons for Observed Practices. Reluctance or failure to make estimates and track
status is widespread in software design. Common reasons for this are schedule pres-
sure, fluid requirements, and limited experience with estimation [e.g., 4, 13, 25]. In
the browser-interface and common-platform projects prominent reasons for the ab-
sence of systematic estimation and status assessment were:

• Accurate estimates presuppose detailed requirements. In the absence of clear re-
quirements it is futile to attempt to estimate the time and resources required to
complete a system or module. Rather, the designers in the browser-interface pro-
ject reversed the process and used deadlines, which were stated more clearly than
requirements, as a pragmatic basis for ‘estimating’ the functionality they would be
able to deliver.

• Not knowing how to handle estimates that are not met. The designers in the com-
mon-platform project gradually lost confidence in estimation when they realized
that they repeatedly failed to meet their estimates. Merely replacing old estimates
with new made the whole effort seem pointless to them. Uncertainty and disagree-
ments about the precise functionality of the modules further reduced their confi-
dence in the estimates. Eventually, they largely abandoned estimation but kept
tracking status.

• Estimates are confronting for the individual designer. Estimates create transpar-
ency with respect to whether the individual designer delivers on time or introduce
delays that may have ripple effects on his or her colleagues’ work. Thus, while es-
timates are central to the management of collaborative work, an immediate conse-
quence for individual designers is increased exposure of delays and thereby a risk
of being perceived as a less competent professional.

The nightly builds in the common-platform project illustrate that keeping track of
project status at the code level and at the requirements level are distinct issues. Ab-
staining from working systematically with requirements means that decisions about
requirements are made by individual designers and may subsequently be contested by
other designers and by users. This provides a fragile basis for making progress and
assessing project status.

3.3 The Collaboration Challenge

The collaboration challenge is about learning within and across projects. After dis-
cussing this constituent of software design it is illustrated with data from the two
empirical studies.

 On the Process of Software Design 493

Learning within and across Projects. In general, no single designer possesses all the
required project knowledge in the necessary detail. Thus, to accommodate the cus-
tomers’ needs as well as needs arising from stakeholders such as marketing, service,
maintenance, and quality control, software design becomes a collaborative effort.
Another reason for developing software collaboratively is that many activities can
then proceed in parallel and thereby both reduce the time from a decision is made to
its consequences become apparent and shorten total development time. However, the
distribution of software design onto multiple individuals creates a need for communi-
cation and coordination, which increases drastically with the size of the collaborating
group [5]. Communication and coordination take place both within and across pro-
jects, corresponding to a short and a long learning loop (Fig. 3).

The project knowledge held by a group of designers is constantly evolving and in
this sense learning is an integral part of their work practice [6]. This learning-in-
working is local, aimed at competent performance, and woven into a collaborative
practice. First, it is local in that it consists of gaining a coherent understanding of
issues pertaining to the project at hand. These project issues are rich in contextual
detail specific to the concrete situation, and these specific details are of paramount
importance to the successful completion of projects. Second, it is aimed at competent
performance because the ability to produce useful and usable systems in a well-
managed way is much more salient to designers than production of generalized, ex-
plicit knowledge. According to Allen [1] this is the distinctive difference between
engineering work and the work of scientists. Third, it is woven into a collaborative
practice in that the different experiences and competencies contributed by different
project participants provide learning opportunities beyond those available to people
working individually. These learning opportunities enable designers to replace project
activities involving prohibitive amounts of individual experimentation with close
collaboration among people with relevant prior experiences.

Within projects written communication can be minimal if the designers meet often.
Design methods often prescribe that a number of design artefacts are produced and
kept up to date, but actual use of the methods tends to be more opportunistic [2, 22].
Design artefacts tend to be used at selected points in projects when designers perceive
that the artefacts may have a direct impact on the progress of their project. During the
in-between periods where the design artefacts are not contributing directly to the

Fig. 3. Short and long learning loops

Short loop Project
initiation

Long
loop

Organization

Project

494 M. Hertzum

designers’ current activities the refinement and maintenance of the artefacts is likely
to be postponed or downgraded in favour of activities that yield more immediate
gains. Instead, designers carry most project information in their heads [34, 38]. This
increases the reliance on oral communication and the centrality of the few people on a
project who are able to reason and argue about how local changes affect the overall
design. Over the course of a project these key people extend and refine their knowl-
edge of the project by repeatedly debating alternatives, resolving disagreements, and
incorporating redirections. Sharing this knowledge within the project group is an
important but time-consuming process [3], and other project activities are likely to be
competing for the key people’s time, including activities that may appear more impor-
tant because they break new ground and thereby yield pertinent project progress.

Across projects the experiences gained and solutions devised by designers may
remain untapped by their colleagues because they are unaware of them or uncertain
about their applicability outside their original context. The long loop represents this
crucial but often unmanaged flow of experiences, solutions, and other knowledge
from individual projects back to the organization for reuse in other projects. Zedtwitz
[37] reports that 80% of projects are not reviewed after completion or cancellation to
systematically and regularly make acquired project knowledge available for organiza-
tional learning. Further, in the design documentation made during projects designers
are likely to make extensive use of condensed writing, which leaves most of the con-
text unsaid because the documentation will be understood by its primary readers –
usually other project members – as belonging to a certain ongoing activity. To make
documents understandable to people who are not familiar with the context the con-
densed forms of writing must be elaborated, often to the exasperation of the primary
readers who can see the elaboration as redundant [7]. Also, the pressure to produce
project progress often precludes that designers spend time expanding their writings
into documents understandable to unknown future readers [20]. Instead, most of the
information that flows from project to project is carried by people, and oral communi-
cation and project staffing become key elements in the cross-project management of
knowledge. This has spurred increasing interest in systems directed at locating
knowledgeable colleagues – people-finding systems [e.g., 29].

Browser-Interface Project. The initial browser-interface prototype, and the analysis
leading up to it, was made by a free-lance consultant who was not otherwise involved
in the project. Thereby the three designers on the project missed the opportunity to
learn from the consultant’s experiences, apart from what they could deduce from the
prototype. Instead, the three designers started largely afresh and relied on oral com-
munication in keeping each other informed about their work. Written design docu-
mentation was sparse and played a negligible role. One of the interviewees estimated
that a total of 20-25 pages of documentation were produced, all at the very end of the
project. Apart from the small size of the project the interviewees emphasized three
core success factors, all of which concerning the distribution of and easy access to
project-relevant knowledge. First, the physical proximity of the three designers made
it quick and easy to ask for help, and supported them in maintaining a mutual aware-
ness of each other’s current activities. Second, the three of them were responsible for
the entire project. The absence of third parties enabled a way of working in which a
shared understanding of the evolving design was constructed and maintained orally

 On the Process of Software Design 495

through numerous conversations in their shared office. Third, the project was assigned
one of the organization’s most competent designers. The interviewed project manager
stressed the importance of the few especially competent people and had made it a
precondition for accepting to become the project manager that one of these core peo-
ple was assigned to the project. Along with informal communication, staffing
appeared to be the major way in which experience was transferred from project to
project. In most cases staffing also determined the possibilities for reuse of software
components because sparse documentation limited reuse to components the individual
designers had themselves been involved in developing. The only occasion on which
the browser-interface project has been evaluated and the lessons learned from it dis-
cussed was at an informal, project-internal meeting shortly after the project deadline.

Common-Platform Project. In the common-platform project the interviewees ex-
pressed a need for better ways of managing how far they had progressed toward com-
pletion. On the one hand, the project manager was not sufficiently good at defining
and enforcing project milestones. On the other hand, the designers were not suffi-
ciently good at communicating the actual status of their modules – many modules
were “almost completed” for extended periods of time. The interviewees found that
this boiled down to (1) frequent opacity or disagreements as to the functionality re-
quired from a module for it to be complete and (2) inadequate estimation skills. The
first issue is a combination of communication breakdowns and imprecision in the
analysis that turned overall project goals into specific requirements. This analysis was
largely left to the individual designer, and no artefacts or stipulated procedures were
in place to support the designers in communicating, arguing about, and reaching clo-
sure on the outcome of these analyses. A core element of the second issue is that writ-
ing source code was perceived as the primary activity whereas the time required for
activities such as testing and documenting the code was generally underestimated. For
the people appointed to system testing this activity was a secondary activity and their
primary task consumed the majority of their time. Thus, testing was patchy and errors
were encountered and corrected in a piecemeal fashion. The project did not include a
post-project evaluation, and the organization has no cross-project forum for commu-
nicating lessons learned in one project to the rest of the organization. That is, the
experiences gained in the project have not been the subject of collaborative discus-
sion, apart from informal exchanges among designers. Thus, as an example, the
nightly build and its associated mechanisms for supporting the development work
were invented and instituted within the common-platform project by a single person,
who has subsequently left the organization.

Reasons for Observed Practices. Projects are ubiquitous in software design, indicat-
ing that organized collaboration is biased toward the short loop whereas collaboration
across projects tends to be informal [35, 37]. This is clearly illustrated by the browser-
interface and common-platform projects. Apart from general cognitive and motiva-
tional factors [e.g., 24] reasons for having few artefacts and forums in place in support
of the long loop include:

• Short-term costs overshadow long-term gains. Extra work is required to make pro-
ject knowledge available to colleagues on other projects, and the reuse benefits of
such work are hard to assess and more distant than the immediate tasks competing

496 M. Hertzum

for designers’ time and attention. In small projects the extra work may be prohibi-
tive and in highly dynamic settings reuse may seldom happen. However, the mem-
bers of the browser-interface and common-platform projects felt that they ought to
invest more in the long loop.

• Project knowledge is context sensitive. Designers interact repeatedly with their
colleagues to get information, trusted opinion, and impetus for creative discourse.
In these interactions, colleagues are not simply sources of information but actively
involved in interpreting the applicability of their knowledge to the concrete situa-
tion. Conversely, designers are reluctant to engage in project post mortems and
other activities that evolve around the context in which knowledge was gained be-
cause they are uncertain whether it will be applicable to future projects.

• Not knowing how to make the long loop more effective. A need for process support
has been noted in relation to the two other constituents of software design but it is
even more apparent in relation to the long loop. With the exception of documenta-
tion, the designers on the browser-interface and common-platform projects lacked
knowledge of and experience with means of collaboratively managing the flow of
knowledge across projects.

The collaboration challenge – especially the long loop – is the constituent of which
the designers on the browser-interface and common-platform projects were least
aware. At the same time, methods for managing the long loop appear to be less devel-
oped than for the short loop [24], though activities such as learning are crucially im-
portant to successful completion of software projects.

4 Implications for User-Centred Design

Based on the analysis of the three constituents of software-project complexity, this
section aims to identify and discuss selected challenges to organizations’ successful
use and continued elaboration of practices for user-centred design.

4.1 Collaborative Grounding

In both empirical studies many of the troubles experienced by the designers concern
collaborative grounding; that is, the active construction by actors of a shared under-
standing that assimilates and reflects available information. Project activities are
rarely performed by the entire group of designers but typically by varying subgroups
of the involved designers. Deliberate efforts of collaborative grounding are required
to extend the knowledge acquired by a subgroup to the remaining designers on a pro-
ject. The designers in the two empirical projects often under-recognized this need for
collaborative grounding. Collaborative grounding is central to contextual design [3]
and some participatory-design techniques [e.g., 19] but most techniques for user-
centred design are biased toward information-seeking activities to the extent of
largely bypassing collaborative grounding. For example, most usability evaluation
methods focus on problem identification and largely evade the subsequent grounding
of the evaluation results in the entire project group. This amounts to assuming that a
project group is one unitary actor, rather than a network of actors that need to actively
construct a shared understanding. The two studied projects vividly illustrate that the

 On the Process of Software Design 497

designers struggled with collaborative grounding in relation to all three constituents of
software design. Examples include that a shared understanding of module functional-
ity was a long time in the making, that estimates were consequently inaccurate and
difficult to interpret, and that no forums for long-loop learning were in place to pre-
vent these issues from recurring in the next project.

4.2 Long-Loop Learning

Small project groups with around five members are widespread in software design,
and many organizations actively opt for small project groups, for example by dividing
development tasks onto multiple projects [8]. The browser-interface project is a case
in point. In such small groups the communication and collaborative grounding neces-
sary to cope with the short loop is manageable. Conversely, the common-platform
project was staffed with 10-15 people, and this alone made it much more demanding
to cope with the short loop. However, the size of a project group is also a means to
shift the balance between the short loop and the long loop. A small project group
needs frequent communication with project-external sources to exploit lessons learned
in other projects. A larger project group will have access to more of these lessons by
means of communication among project members and the long loop will, thereby, be
partly subsumed in the short loop. Apart from project staffing, the organizations in
both empirical studies relied on informal exchanges among designers as the principal
means of exploiting experience from one project in other projects. Given the frequent
recommendations of small projects [8, 11] and the ensuing reliance on an effective
long loop it is noteworthy that methods for user-centred design focus almost exclu-
sively on individual projects. Thus, methods as well as practitioners appear to devote
most of their attention to the short loop and in so doing they render the long loop
comparatively invisible. In both empirical projects the designers seemed to devote
little time and attention to collaborative activities directed at improving their practices
from one project to the next. Concrete guidance is needed on how to work effectively
with the long loop in relation to user-centred design. Activities involving a more sys-
tematic pull of information, practices, and other resources into projects are probably
more likely to become successful than activities aimed at pushing information and so
forth from ongoing toward future projects.

4.3 Intimidation Barriers and Project Knowledge

The small to medium size of the projects and organizations in the two empirical studies
could be an important factor in understanding their practices. The size may create an
intimidation barrier toward software-process and long-loop initiatives that introduce
(1) a new mindset promoting the longer-term effects of present practices rather than
their more visible, immediate effects, (2) more systematic and regulated work proc-
esses, and (3) methods that are generally associated with large projects and organiza-
tions. The two empirical studies point toward a need for lightweight techniques and
practices for managing the complexities inherent in the three constituents of software
design. Discount usability engineering [31] suggests that unintimidating starting points
and modest steps may be important to the adoption of such techniques and practices.
However, practitioners also need to realize that as the systems they engage in

498 M. Hertzum

designing grow increasingly complex so does their need for techniques and practices
that can match this complexity. A more managed process appears necessary. For user-
centred design this seems to point toward further work on reaching closure on a design,
integrating the task-artefact and plan-activity cycles, and communicating experiences
across projects. Improved practices and a more managed process should, however, not
be achieved by starting to consider methods an alternative to the project knowledge
created by designers in response to the particularities of their current project.

5 Conclusion

Software design is a complex undertaking as evidenced by the frequency with which
projects are cancelled, late, over budget, or resulting in marginal gains and systems
disliked by users. Three major constituents of software-project complexity have been
analysed in this study: the formative element, the progress imperative, and the col-
laboration challenge. Empirical data from two small to medium-size projects illustrate
that practitioners struggle to manage these constituents. While each of the empirical
studies is based on only two informants, the studies provide patent illustrations of a
gap between the state of affairs in these software projects and the state of the art re-
garding software-process management. The designers in the two studied projects had
few techniques and other means in place to support their work. Instead, they relied on
an informal approach in which requirements, estimates, status information, and other
design information were largely kept in the designers’ heads and exchanged with
close-by colleagues on an ad-hoc basis. The exceptions to this informal approach
were carefully selected and mainly consisted of the nightly builds in the larger of the
two projects and the annual customer seminar hosted by the organization in which the
other project took place.

In many organizations, the principal means of coping with the long loop is project
staffing. This reflects that project knowledge often unfolds around a few people with
knowledge of relevant prior projects and the ability to take in the various pieces of
information involved in a design, make out how they hang together, and articulate this
clearly. A main challenge for user-centred design is to provide support for a more
managed design process while avoiding that methods become seen as an alternative to
project knowledge.

Acknowledgements. Johannes Knigge contributed to the empirical studies. Special
thanks are due to the interviewees who agreed to participate in this study in spite of
their busy schedules.

References

1. Allen, T.J.: Distinguishing engineers from scientists. In: Katz, R. (ed.) Managing Profes-
sionals in Innovative Organizations: A Collection of Readings, Ballinger, Cambridge, MA,
pp. 3–18 (1988)

2. Bansler, J.P., Bødker, K.: A reappraisal of structured analysis: design in an organizational
context. ACM Transactions on Information Systems 11(2), 165–193 (1993)

3. Beyer, H., Holtzblatt, K.: Contextual Design: Defining Customer-Centered Systems. Mor-
gan Kaufmann, San Francisco (1998)

 On the Process of Software Design 499

4. Boehm, B.W.: Software risk management: principles and practices. IEEE Software 8(1),
32–41 (1991)

5. Brooks, F.P.: The Mythical Man-Month: Essays on Software Engineering, Anniversary
edn. Addison-Wesley, Reading (1995)

6. Brown, J.S., Duguid, P.: Organizational learning and communities-of-practice: toward a
unified view of working, learning, and innovation. Organization Science 2(1), 40–57
(1991)

7. Brown, J.S., Duguid, P.: The social life of documents. First Monday 1, 1 (1996),
 http://firstmonday.org/issues/issue1/documents/index.html

8. Carmel, E., Bird, B.J.: Small is beautiful: a study of packaged software development
teams. Journal of High Technology Management Research 8(1), 129–148 (1997)

9. Carroll, J.M., Kellogg, W.A., Rosson, M.B.: The task-artifact cycle. In: Carroll, J.M. (ed.)
Designing Interaction: Psychology at the Human-Computer Interface, pp. 74–102. Cam-
bridge University Press, Cambridge (1991)

10. Curtis, B., Krasner, H., Iscoe, N.: A field study of the software design process for large
systems. Communications of the ACM 31(11), 1268–1287 (1988)

11. Cusumano, M.A., Selby, R.W.: How Microsoft builds software. Communications of the
ACM 40(6), 53–61 (1997)

12. Danish Board of Technology: Erfaringer fra statslige IT-projekter – hvordan gør man det
bedre? Report No. 10, Copenhagen, DK (2001)

13. DeMarco, T.: Controlling Software Projects: Management, Measurement and Estimation.
Yourdon Press, Englewood Cliffs (1982)

14. Eason, K.: Information Technology and Organisational Change. Taylor & Francis, London
(1988)

15. Egan, D.E.: Individual differences in human-computer interaction. In: Helander, M. (ed.)
Handbook of Human-Computer Interaction, pp. 543–568. Elsevier, Amsterdam (1988)

16. Eodice, M.T., Fruchter, R., Leifer, L.J.: Towards a theory of engineering requirements
definition. In: Lindemann, B., Meerkamm, V. (eds.) Proceedings of ICED 1999, vol. III,
pp. 1541–1546. Technische Universität München, Garching, DE (1999)

17. Fayad, M.E., Laitinen, M., Ward, R.P.: Software engineering in the small. Communica-
tions of the ACM 43(3), 115–118 (2000)

18. Gould, J.D., Lewis, C.: Designing for usability: key principles and what designers think.
Communications of the ACM 28(1), 300–311 (1985)

19. Greenbaum, J., Kyng, M. (eds.): Design at Work: Cooperative Design of Computer Sys-
tems. Erlbaum, Hillsdale (1991)

20. Grudin, J.: Evaluating opportunities for design capture. In: Moran, T.P., Carroll, J.M.
(eds.) Design Rationale: Concepts, Techniques, and Use, pp. 453–470. Erlbaum, Mahwah
(1996)

21. Hayes, W., Over, J.W.: The Personal Software Process (PSP): An Empirical Study of the
Impact of PSP on Individual Engineers. Technical Report No. CMU/SEI-97-TR-001. Car-
negie Mellon University, Pittsburgh, PA (1997)

22. Hertzum, M.: Making use of scenarios: a field study of conceptual design. International
Journal of Human-Computer Studies 58(2), 215–239 (2003)

23. Hertzum, M.: Small-scale classification schemes: a field study of requirements engineer-
ing. Computer Supported Cooperative Work 13(1), 35–61 (2004)

24. Hinds, P.J., Pfeffer, J.: Why organizations don’t know what they know: cognitive and mo-
tivational factors affecting the transfer of expertise. In: Ackerman, M.S., Pipek, V., Wulf,
V. (eds.) Sharing Expertise: Beyond Knowledge Management, pp. 3–26. MIT Press,
Cambridge, MA (2003)

500 M. Hertzum

25. Humphrey, W.S.: Why don’t they practice what we preach? Annals of Software Engineer-
ing 6, 201–222 (1998)

26. Humphrey, W.S.: Three process perspectives: organizations, teams, and people. Annals of
Software Engineering 14, 39–72 (2002)

27. Kensing, F., Munk-Madsen, A.: PD: structure in the toolbox. Communications of the
ACM 36(6), 78–85 (1993)

28. Landauer, T.K.: The Trouble with Computers: Usefulness, Usability and Productivity.
MIT Press, Cambridge, MA (1995)

29. Mockus, A., Herbsleb, J.D.: Expertise browser: a quantitative approach to identifying ex-
pertise. In: Proceedings of ICSE 2002, pp. 503–512. ACM Press, New York (2002)

30. Naur, P.: The place of programming in a world of problems, tools, and people. In: Kalen-
ich, W. (ed.) Proceedings of IFIP Congress 65, Spartan Books, Washington, DC, pp. 195–
199 (1965)

31. Nielsen, J.: Usability Engineering. Academic Press, San Diego (1993)
32. Norman, D.A.: Cognitive engineering. In: Norman, D.A., Draper, S.W. (eds.) User Cen-

tered System Design: New Perspectives on Human-Computer Interaction, pp. 31–61. Erl-
baum, Hillsdale (1986)

33. Perry, D.E., Staudenmayer, N.A., Votta, L.G.: People, organizations, and process im-
provement. IEEE Software 11(4), 36–45 (1994)

34. Potts, C., Catledge, L.: Collaborative conceptual design: a large software project case
study. Computer Supported Cooperative Work 5(4), 415–445 (1996)

35. Schindler, M., Eppler, M.J.: Harvesting project knowledge: a review of project learning
methods and success factors. International Journal of Project Management 21(3), 219–228
(2003)

36. Schmidt, R., Lyytinen, K., Keil, M., Cule, P.: Identifying software project risks: an interna-
tional Delphi study. Journal of Management Information Systems 17(4), 5–36 (2001)

37. von Zedtwitz, M.: Organizational learning through post-project reviews in R&D. R&D
Management 32(3), 255–268 (2002)

38. Walz, D.B., Elam, J.J., Curtis, B.: Inside a software design team: knowledge acquisition,
sharing, and integration. Communications of the ACM 36(10), 63–77 (1993)

Questions

Jan Gulliksen:
Question: This kind of work usually focuses on projects that have failed. Did you try
to find successful projects and see how they work? Or find out whether changing
practices would make projects more successful?

Answer: We didn’t select our projects for success or failure. Others have looked at
success. Also looking at projects that have used user-centred methods will tell us
something more.

Annelise Mark Pejtersen:
Question: Can you make such a sharp distinction between successful and unsuccess-
ful projects?

Answer: I agree. If you ask different people they will also have different views about
the project. Some people focus on process, and others on product.

	On the Process of Software Design: Sources of Complexity and Reasons for Muddling through
	Introduction
	Empirical Data
	Three Constituents of Software Design
	The Formative Element
	The Progress Imperative
	The Collaboration Challenge

	Implications for User-Centred Design
	Collaborative Grounding
	Long-Loop Learning
	Intimidation Barriers and Project Knowledge

	Conclusion
	References

