Skip to main content

Heterodyne/Homodyne Detection of MWM

  • Chapter
Multi-Wave Mixing Processes

Abstract

In this chapter, phase-sensitive heterodyne (or homodyne) detection technique is developed in investigating real (dispersion) and imaginary (absorption) parts of high-order nonlinear susceptibilities using color-locked twin noisy fields. In a three-level system, the complex third-order nonlinear susceptibility is determined by heterodyning signals from the two-photon ND-FWM with the reference signal from another one-photon DFWM process in the same system, which propagate along the same optical path and have the same frequency. By controlling the relative phase between these two co-existing nonlinear wave-mixing processes, the third-order nonlinear absorption and dispersion of such ultrafast polarization beat signals can be obtained. Using such phase-sensitive heterodyne detection technique, real and imaginary parts of the fifth-order (χ(5)) and seventh-order (χ(7)) nonlinear susceptibilities can be determined through beating between the SWM signal and a FWM reference (local oscillator) beam and between the EWM signal and a SWM reference (local oscillator) beam, respectively, in specially designed energy-level configurations. The greatly enhanced third- fifth- and seventh-order nonlinear responses with different signs can be modified and controlled through the color-locked correlations of twin noisy fields. Determining and controlling real and imaginary parts of the high-order nonlinear susceptibilities is very important in understanding the propagation of high-intensity pulses and solitons, and can lead to many other interesting applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jain M, Xia H, Yin G Y, et al. Efficient nonlinear frequency conversion with maximal atomic coherence. Phys. Rev. Lett., 1996, 77: 4326–4329. Braje D A, Balic V, Goda S, et al. Frequency mixing using electromagnetically induced transparency in cold atoms. Phys. Rev. Lett., 2004, 93: 183601-183604.

    Article  ADS  Google Scholar 

  2. Lu B, Burkett W H, Xiao M. Nondegenerate four-wave mixing in a double-Lambda system under the influence of coherent population trapping. Opt. Lett., 1998, 23: 804–806. Li Y Q, Xiao M. Enhancement of nondegenerate four-wave mixing based on electromagnetically induced transparency in rubidium atoms. Opt. Lett., 1996, 21: 1064-1066.

    Article  ADS  Google Scholar 

  3. Kang H, Hernandez G, Zhu Y F. Resonant four-wave mixing with slow light. Phys. Rev. A, 2004, 70: 061804(R). Kang H, Hernandez G, Zhu Y F. Superluminal and slow light propagation in cold atoms. Phys. Rev. A, 2004, 70, 011801(R).

    Article  ADS  Google Scholar 

  4. Wang H, Goorskey D, Xiao M. Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system. Phys. Rev. Lett., 2001 87: 073601. Wang H, Goorskey D J, Xiao M. Dependence of enhanced Kerr nonlinearity on coupling power in a three-level atomic system. Opt. Lett., 2002, 27: 258-260.

    Article  ADS  Google Scholar 

  5. Kang H S, Zhu Y F. Observation of large Kerr nonlinearity at low light intensities. Phys. Rev. Lett., 2003, 91: 093601.

    Article  ADS  Google Scholar 

  6. Ma H, Acioli L H, Gomes A S L, et al. Method to determine the phase dispersion of the 3rd-order susceptibility. Opt. Lett., 1991, 16: 630; Ma H, Gomes A S L, De Araujo C B. Raman-assisted polarization beats in time-delayed four-wave mixing. Opt. Lett., 1992, 17: 1052-1054; Ma H, De Araujo C B. Interference between 3rd-order and 5th-order polarizations in semiconductor-doped glasses. Phys. Rev. Lett., 1993, 71: 3649.

    Article  ADS  Google Scholar 

  7. Zhang Y P, Gan C L, Li L, et al. Rayleigh-enhanced attosecond sum-frequency polarization beats via twin color-locking noisy lights. Phys. Rev. A, 2005, 72: 013812; Zhang Y P, Gan C L, Song J P, et al. Attosecond sum-frequency Raman-enhanced polarization beating by use of twin phase-sensitive color locking noisy light beams. J. Opt. Soc. Am. B, 2005, 22: 694-711.

    Article  ADS  Google Scholar 

  8. DeBeer D, Usadi E, Hartmann S R. Attosecond beats in sodium vapor. Phys. Rev. Lett., 1988, 60: 1262–1266.

    Article  ADS  Google Scholar 

  9. Fu P M, Mi X, Yu Z H, et al. Ultrafast modulation spectroscopy in a cascade three-level system. Phys. Rev. A, 1995, 52: 4867–4870.

    Article  ADS  Google Scholar 

  10. Zhang Y P, De Araujo C B, Eyler E E. Higher-order correlation on polarization beats in Markovian stochastic fields. Phys. Rev. A, 2001, 63: 043802; Zhang Y P, Gan C L, Song J P, et al. Coherent laser control in attosecond sum-frequency polarization beats using twin noisy driving fields. Phys. Rev. A, 2005, 71: 023802.

    Article  ADS  Google Scholar 

  11. Morita N, Yajima T. Ultrahigh-time-resolution coherent transient spectroscopy with incoherent light. Phys. Rev. A, 1984, 30: 2525–2536; Ulness D J. On the role of classical field time correlations in noisy light spectroscopy: color locking and a spectral filter analogy. J. Phys. Chem. A, 2003, 107: 8111-8123; Schulz T F, Aung P P, Weisel L R, et al. Complete cancellation of noise by means of color-locking in nearly degenerate, four-wave mixing of noisy light. J. Opt. Soc. Am. B, 2005, 22: 1052-1061; Kirkwood J C, Ulness D J, Albrecht A C. On the classification of the electric field spectroscopies: Application to Raman scattering. J. Phys. Chem. A, 2000, 104: 4167-4173.

    Article  ADS  Google Scholar 

  12. Burkett W H, Lu B, Xiao M. Influence of injection current noise on the spectral characteristics of semiconductor lasers. IEEE J. Quantum Electron., 1997, 33: 2111–2118.

    Article  ADS  Google Scholar 

  13. Drescher M, Hentschel M, Kienberger R, et al. Time-resolved atomic inner-shell spectroscopy. Nature, 2002, 419: 803–807.

    Article  ADS  Google Scholar 

  14. Garrett W R, Moore M A, Hart R C, et al. Suppression effects in stimulated hyperRaman emissions and parametric four-wave mixing in sodium vapor. Phys. Rev. A, 1992, 45: 6687–6709.

    Article  ADS  Google Scholar 

  15. Paz-Alonso M J, Michinel H. Superfluidlike motion of vortices in light condensates. Phys. Rev. Lett., 2005, 94: 093901–093904; Michinel H, Paz-Alonso M J. Turning light into a liquid via atomic coherence. Phys. Rev. Lett., 2006, 96: 023903-023906.

    Article  ADS  Google Scholar 

  16. Ulness D J, Kirkwood J C, Albrecht A C. Competitive events in fifth order time resolved coherent Raman scattering: Direct versus sequential processes. J. Chem. Phys., 1998, 108: 3897; Moll K D, Homoelle D, Gaeta A L, et al. Conical harmonic generation in isotropic materials Phys. Rev. Lett., 2002, 88: 153901-153904.

    Article  ADS  Google Scholar 

  17. Ma H, De Araujo L E E, Gomes A S L, et al. Phase measurements of the fifth-order susceptibility of Cd(S, Se)-doped glasses. Opt. Commun., 1993, 102: 89–92.

    Article  ADS  Google Scholar 

  18. Zhang Y P, Gan C L, Xiao M. Modified two-photon absorption and dispersion of ultrafast third-order polarization beats via twin noisy driving fields. Phys. Rev. A, 2006, 73: 053801.

    Article  ADS  Google Scholar 

  19. Zhang Y P, Brown A. W, Gan C L, et al. Intermixing between four-wave mixing and six-wave mixing in a four-level atomic system. J. Phys. B, 2007, 40: 3319–3329.

    Article  ADS  Google Scholar 

  20. Zhang Y P, Anderson B, Xiao M. Coexistence of four-wave, six-wave and eight-wave mixing processes in multi-dressed atomic systems. J. Phys. B, 2008, 41: 045502.

    Article  ADS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Higher Education Press, Beijing and Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

(2009). Heterodyne/Homodyne Detection of MWM. In: Multi-Wave Mixing Processes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89528-2_4

Download citation

Publish with us

Policies and ethics