Skip to main content

Small Wind Turbines

  • Chapter
  • First Online:
Advances in Wind Energy Conversion Technology

Part of the book series: Environmental Science and Engineering ((ENVENG))

Abstract

The recently released revision of the international safety standard for small wind turbines defines a small wind turbine as having a rotor swept area (equal to πR 2 where R is the radius of the blade tip) of less than 200 m2. This corresponds to R < 8 m and a rated power below about 50 kW. The standard also makes a further division: “micro” turbines have a swept area less than 2 m2 and rated power below about 500 W.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. International Electrotechnical Commission (2006) IEC 61400-2 revision 2, Wind turbines - Part 2: Design requirements for small wind turbines, obtainable from www.iec.ch

  2. Sunada S, Sakaguchi A, Kawachi K (1997) Airfoil section characteristics at low Reynolds number. J Fluids Engineering 119:129–135

    Article  CAS  Google Scholar 

  3. Wood DH (1996) Some effects of compressibility on small horizontal-axis wind turbines. Renewable Energy 10:11–17

    Article  Google Scholar 

  4. Lowson MV (1992) Applications of Aero-Acoustic Analysis to Wind Turbine Noise, Proc. 18th British Wind Energy Assoc. Conf., B.R. Clayton (ed.), M.E.P

    Google Scholar 

  5. Wagner S, Bareiss R, Guidati G (1996) Wind Turbine Noise, Springer-Verlag, Berlin Heidelberg, New York

    Google Scholar 

  6. Wood DH (1997) Noise measurement and prediction for small wind turbines, Paper #153, Solar ‘97, Canberra

    Google Scholar 

  7. Migliore P, van Dam J., Huskey A (2004). Acoustic tests of small wind turbines. AIAA Paper #2004–1185

    Google Scholar 

  8. Wright AD, Wood DH (2004) The starting and low wind speed behaviour of a small horizontal-axis wind turbine. J. Wind Eng’g & Indust. Aerodyn. 92:1265–1279

    Article  Google Scholar 

  9. Wright AD (2005) Aspects of the Aerodynamics of Small Wind Turbines. Ph.D. thesis, Univ. Newcastle

    Google Scholar 

  10. Burton T, Sharpe D, Jenkins N, Bossanyi E (2001). Wind Energy Handbook, John Wiley & Sons, Chichester

    Google Scholar 

  11. Wood DH (2004) Dual Purpose Design of Small Wind Turbine Blades. Wind Engineering, 28:511–527

    Article  Google Scholar 

  12. Price K, Storn R, Lampinen J (2006) Differential Evolution - A Practical Approach to Global Optimization. Springer, Berlin

    Google Scholar 

  13. Wieringa J (1967) Evaluation and Design of Wind Vanes. Journal of Applied Meteorology, 6:1114–1122

    Article  Google Scholar 

  14. Kristensen L (1994) Cups, Props and Vanes, Riso-R-766(EN). Available from: http://www.risoe.dk/rispubl/vea/veapdf/ris-r-766.pdf

  15. Katz J, Plotkin A (2001) Low Speed Aerodynamics: second edition. C.U.P, Cambridge

    Google Scholar 

  16. Bechly ME, Gutierrez H, Streiner S, Wood DH (2002). Modelling the Yaw Behaviour of Small Wind Turbines. Wind Engineering 26:223–239

    Article  Google Scholar 

  17. Torres GE, Mueller TJ (2004) Low-aspect ratio wing aerodynamics at low Reynolds number. AIAA Journal 42:865–873

    Article  Google Scholar 

  18. McCormick BW (1979) Aerodynamics, Aeronautics and Flight Mechanics, First Edition. John Wiley and Sons, New York

    Google Scholar 

  19. Wright AD, Wood DH (2007). Yaw rate, rotor speed and gyroscopic loads on a small horizontal axis wind turbine. Wind Engineering, 31:197–209

    Article  Google Scholar 

  20. Bikdash M, Chen DA, Harb M (2001) A hybrid model of a small autofurling wind turbin J Vibration & Control 7:127–148

    Article  Google Scholar 

  21. Corbus D, Hansen AC, Minnema J (2006) Effect of blade torsion on modeling results for the small wind research turbine. J Solar Energy Engg 128:481–486

    Article  Google Scholar 

  22. Bowen AJ, Zakay N, Ives RL (2003). The field testing of a remote 10 kW wind turbine. Renewable Energy 28:13–33

    Article  Google Scholar 

  23. Teodorescu R, Blaabjerg F (2004). Flexible control of small wind turbines with grid failure detection operating in stand-alone and grid-connected mode. IEEE Transactions Power Electronics 19:1323–1332

    Article  Google Scholar 

  24. Sürgevil T, Akpinar E (2005) Modeling of a 5-kWwind energy conversion system with induction generator and comparison with experimental results. Renewable Energy, 30:913–929

    Article  Google Scholar 

  25. Mirecki A, Roboam X, Richardeau F (2007) Architecture complexity and energy efficiency of small turbines. IEE Transactions Industrial Electronics 54:660–670

    Article  Google Scholar 

  26. Rauh A, Peinke J (2004) A phenomenological model for the dynamic response of wind turbines to turbulent wind. J. Wind Eng’g & Indust. Aerodyn. 92:159–183

    Article  Google Scholar 

  27. Wood DH (2007) A simple force analysis for the raising and lowering of a small wind turbine and tower. Wind Engineering

    Google Scholar 

  28. http://www.bwea.com/you/siting.html

  29. Wood DH (2001) An improved determination of the optimum tower height for a small wind turbine. Wind Engineering, 25:191–196

    Article  Google Scholar 

  30. http://www.bergey.com/

  31. Irvine MR., Gardiner BA, Hill MK (1997) The evolution of turbulence across a forest edge. Boundary-layer Meteor. 84:467–496

    Article  Google Scholar 

  32. Lopes da Costa JC., Castro FA, Palma JMLM, Stuart P (2006) Computer simulation of atmospheric flows over real forests for wind energy resource evaluation. J. Wind Eng’g & Indust. Aerodyn. 94:603–620

    Article  Google Scholar 

  33. Lee X (2000) Air motion within and above forest vegetation in non-ideal conditions. Forest Ecol. & Management 135:3–18

    Article  Google Scholar 

  34. Miley SJ (1982) A Catalog of Low Reynolds Number Airfoil Data for Wind Turbine Applications. Report DE82-021712, U.S. Dept Energy

    Google Scholar 

  35. Giguere P, Selig MS (1998) New airfoils for small horizontal axis wind turbines. J Solar Energy Engg 120:108–114

    Article  CAS  Google Scholar 

  36. http://www.ae.uiuc.edu/m-selig/

  37. Wilson SVR, Clausen PD Wood DH (2008). “Gyroscopic Moments on Small Wind Turbines Blades at High Yaw Rates”, Trans IE Aust, Aus. J. Mech. Engg, 5:1–8

    Google Scholar 

Download references

Acknowledgments

The author is grateful to all his colleagues and students who have contributed greatly to his knowledge of small wind turbines over the years. The most valuable contributions to the work described here were by Andrew Wright, Phil Clausen, Peter Freere, and Sturt Wilson, but the list is by no means exhaustive.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Wood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wood, D. (2011). Small Wind Turbines. In: Sathyajith, M., Philip, G. (eds) Advances in Wind Energy Conversion Technology. Environmental Science and Engineering(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88258-9_8

Download citation

Publish with us

Policies and ethics