
Model Based Synthesis of Embedded Software

Daniel D. Gajski, Samar Abdi, and Ines Viskic

Center for Embedded Computer Systems
University of California, Irvine, CA 92617

{gajski,sabdi,iviskic}@uci.edu

Abstract. This paper presents SW synthesis using Embedded System Environ-
ment (ESE), a tool set for design of multi-core embedded systems. We follow
a design process that starts with an application model consisting of C processes
communicating via abstract message passing channels. The application model is
mapped to a platform net-list of SW and HW cores, buses and buffers. A high
speed transaction level model (TLM) is generated to validate abstract communi-
cation between processes mapped to different cores. The TLM is further refined
into a Pin-Cycle Accurate Model (PCAM) for board implementation. The PCAM
includes C code for all the communication layers including routing, packeting,
synchronization and bus transfer. The generated embedded SW provides a library
of application level services to the C processes on individual SW cores. There-
fore, the application developer does not need to write low level SW for board
implementation. Synthesis results for an multi-core MP3 decoder design, using
ESE, show that the embedded SW is generated in order of seconds, compared to
hours of manual coding. The quality of synthesized code is comparable to manu-
ally written code in terms of performance and code size.

1 Introduction

Multi-core embedded systems are being increasingly used to meet the complexity and
performance requirements of modern applications. Embedded application developers
need a library of communication services to validate and debug their multi-threaded
code. On the other hand, system designers need to provide board prototypes and system
SW for application development. Model based design is widely seen as an enabler for
early application development before the prototype is ready. Software simulation mod-
els for multi-core embedded systems may be created at various levels of abstraction
for different purposes. Models at higher abstraction levels, such as TLM, execute faster
and are therefore better for application development. However, with higher abstraction,
there are fewer design details to allow realistic estimation of design metrics. Pin-cycle
accurate models (PCAMs) provide accurate performance estimates and are required for
prototyping. However, they are too slow to use for application development. Further-
more, PCAMs require an implementation of core, platform and application-specific
system SW services on top of the SW core’s instruction set. Some of these services are
available directly in an RTOS for the SW core. Others, such as external communication
methods, must be manually written or may require RTOS configuration.

Integrated design environments, such as ESE [3], are needed to transform application
level models into platform specific TLMs for exploration and PCAMs for implementa-
tion. In this paper we will discuss the model based design methodology of ESE, with

U. Brinkschulte, T. Givargis, and S. Russo (Eds.): SEUS 2008, LNCS 5287, pp. 21–33, 2008.
c© IFIP International Federation for Information Processing 2008

22 D.D. Gajski, S. Abdi, and I. Viskic

focus on embedded SW synthesis. Our methodology and synthesis technique allows
automatic transformation of application level models with abstract message passing
communication into PCAMs with an embedded SW stack of communication services.
The automation not only cuts design time, but results in modular embedded SW that is
consistent with the application level model.

2 Related Work

There has been significant research in model based design for embedded systems in the
recent years. Standardization approaches such as AUTOSAR [2] and OSEK [4] provide
common API and middleware for automotive SW development. On the other hand,
system level design languages such as SystemC [5] and SpecC [9] allow multi-core
system modeling with simulation speeds suitable for SW development. Such efforts
have provided the groundwork for developing and deploying model automation tools
such as the one presented in this paper.

There has also been much work in embedded system modeling frameworks and SW
code generation from specific input languages. POLIS [7] (Co-Design Finite State Ma-
chine), DESCARTES [19] (ADF and an extended SDF), Cortadella [8] (petri nets) and
SCE [10] (SpecC) provide limited automation for SW generation from certain mod-
els of computation. In contrast, our approach provides a C based input with multi-core
support and has been demonstrated with actual board implementation.

Modular communication modeling has been proposed for application domains such as
real-time systems and platforms such as heterogeneous multi-core systems. Kopetz [13]
proposes component model for dependable automotive systems. Sangiovanni-
vincentelli [21] has proposed a three phase simulation model for platform based design.
These approaches tackle security, dependability and heterogeneity at the system level,
but require underlying SW services and tools to implement the models. Communication
optimization techniques [18,20,17] on the other hand have dealt primarily with platform
and application transformations using simulation models. In contrast, our communica-
tion SW synthesis focuses on code generation for accurate optimization feedback and is
fast and flexible enough to incorporate application and platform modifications on the fly.

Hardware dependent SW [15] has been a topic of active research lately and
our work contributes to it. Commercial vendors provide a board support package
(BSP) [6,1] with their board IDEs, but such software is customized for the limited set of
IP cores available or synthesizable on the board. Most academic approaches so far have
dealt with porting of simulation models on RTOS, discounting external communication.
Herrara [12] proposes overloading SystemC library elements to reuse the same model
for specification and target execution, but partly replicates the simulation engine on the
host and thereby imposes strict input requirements. Krause [14] proposes generation
of source code from SystemC mapped onto an RTOS, while Gauthier’s method [11]
provides generation of application-specific RTOS and the corresponding application
SW. Both techniques cannot be extended to muti-core platforms with inter-core com-
munication synthesis. Yu [23] shows generation of application C code from concurrent
SpecC, which requires the initial system modeling to be done in SpecC. The Phantom
Serializing Compiler [16] translates multi-tasking POSIX C code input into sequential

Model Based Synthesis of Embedded Software 23

Fig. 1. ESE Design Flow

C code by custom scheduling, but is a purely SW core-specific optimization. Schirner
[22] also proposes hardware dependent synthesis from SpecC models but only consid-
ers platforms with single core connected to several peripherals. In contrast to all the
above techniques, ESE provides generation of core, platform and application-specific
embedded SW for multi-core systems, starting from an abstract C based application
model.

3 Model Based Design with ESE

Our model based design methodology is shown in Figure 1. We start with an applica-
tion model that consists of C processes communicating via synchronized point-to-point
handshake channels and shared variables. The platform definition is a graphical net list
of processing elements (PEs), buses and transducers. Processes and variables in the ap-
plication model are mapped to the PEs in the platform. Channels are mapped to routes
in the platform. If the route includes a buffer, then the communicated data may need to
be broken up into smaller packets according to the buffer size limitations. The above
design decisions and data models of PEs, buses and RTOSes are used by the ESE Front-
End to generate a TLM. The TLM models the PEs as SystemC modules connected to
the communication architecture model consisting of bus channels and buffer modules.
The original application processes are encapsulated as SystemC threads instantiated in-
side the PE modules. The point-to-point channel accesses of the application model are
mapped into equivalent packet transactions routed over the communication model.

The step of refining the TLM into a PCAM is performed by the ESE Back-End. The
component data models in TLM are replaced with respective implementation libraries
in the PCAM. Synchronization is modeled in the TLM via abstract SystemC flags and
events. The flag and event accesses must be transformed into interrupts or polling in
the PCAM. Similarly, the packet transactions over the bus channels in the TLM must
be transformed into equivalent arbitration and data transfer cycles on the system buses.
The transformations applied to the model result in various C functions per SW core.
These functions form the embedded SW library for that core. If there are HW IPs in the

24 D.D. Gajski, S. Abdi, and I. Viskic

platform, they will require RTL interface blocks for the same functions, with platform
specific timing constraints. In this section, we will discuss the above models in greater
detail to provide an idea of the input and output of the embedded SW synthesis process.

3.1 Platform Template

In order to automate the synthesis of embedded SW, we first need to define the platform
components and connections. The platform is composed of processing elements (PEs),
memories, buses and transducers. PEs are our generic term for HW and SW cores on
which application processes are mapped. Memories are storage cores that do not have
any active thread of computation. Shared variables in the application are mapped to
memories. Buses are generic communication units that can act as point-to-point links
or shared buses with arbitration. Buses have well defined protocols and may connect to
compatible ports on a given core.

Transducers are generic interface cores that provide functionality of (1) protocol
conversion and (2) store-and-forward static routing. Transducers consist of internal
buffers and may connect to incompatible buses via different ports. For each bus con-
nection, they have an IO interface and a Request Buffer. This request buffer stores all
send/receive requests made to the transducer for storing and forwarding data on a chan-
nel. Thus, they allow sending data from one PE to another if the two PEs are not con-
nected to a common bus. A route in the platform is a sequence of buses and transducers
with the following regular expression:

PEsender → Bus0 → [Transduceri → Busi →] ∗ PEreceiver

Channels in the application are mapped to routes in the platform. As a result, each
transducer in the platform may have several channels routed through it. For each such
channel, the transducer defines (1) a unique buffer partition to be used by data on that
channel, (2) a unique bus address for a send request, and (3) a unique bus address
for a receive request. Since transactions on a channel are sequential, the partitioning
of transducer buffers guarantees safety and liveness of implementation, provided the
application model is safe and live.

3.2 Application Model

Figure 2. shows the application model of an MP3 Decoder. The decoding algorithm is
captured with a set of eight concurrent processes, each executing sequential C code.
Process Huffman Decoder inputs MP3 stream organized in frames, performs Huffman
decoding, re-quantization and frame reordering. The frames are then classified into ei-
ther left or right stereo stream and processed separately. Left and Right Alias Reduc-
tion processes reduce the aliasing effects in frames, while the Left and Right IMDCTs
convert the frequency domain samples to frequency sub-band samples. The two DCT
processes transform the individual frequency sub-bands into PCM samples and send
them to the PCM process for correction verification.

Communication in application model is enabled with calls to (a) send/recv
methods for direct process communication, and (b) read/write methods for access-
ing variables shared between processes. The send/recv methods are encapsulated in

Model Based Synthesis of Embedded Software 25

Fig. 2. Application model

process-to-process channels with no message buffering. Instead, process-to-process
channels follow handshake synchronization semantics, where the receiver process
blocks until the sender has sent the communicated data. All communication in MP3
Decoder is modeled using process-to-process channels Ch1 through Ch9.

On the other hand, the communication with read/write methods is unblocking.
The shared variables are in the global scope and are accessed with unsynchronized ac-
cess channels. The two communication mechanisms are sufficient to model more com-
plex communication services such as FIFOs, mutexes, mailboxes or events. Therefore,
the synthesis of the basic communication models of handshake channels and shared
variable access channels is necessary and sufficient for implementing any inter-process
communication service at this level of abstraction.

The set of processes, variables and channels are built on top of the SystemC sim-
ulation kernel, as shown on Figure 2. The processes execute as concurrent threads on
the simulation kernel. The process to process channels use the notify-wait semantics
of the kernel events to implement handshake synchronization. The shared variables are
modeled as passive SystemC modules that export read and write interfaces, which are
used to connect them to the access channels. Interfaces are also defined for processes
to allow connection to channels. A well defined interface template provides a commu-
nication API with the following functions, where < i > is the name of used interface:

– < i > Send(void *data, int size) Synchronized send

– < i > Recv(void *data, int size) Synchronized receive

– < i > Write(void *data, int size) Non-blocking write

– < i > Read(void *data, int size) Non-blocking read

By separating the communication interface from the rest of the computation code,
we are able to successively refine only the interface implementation code. The API
provided to the application developer stays the same throughout SW synthesis.

26 D.D. Gajski, S. Abdi, and I. Viskic

Fig. 3. TLM resulting from application to platform mapping

3.3 Transaction Level Model

The TLM is derived by mapping the application model in Section 3.2 to an embedded
platform. The platform components are modeled with a well defined SystemC code
template. PEs are modeled as SystemC modules that instantiate application processes.
The system buses are modeled with a universal bus channel (UBC), that provides meth-
ods for synchronized send/receive, non-blocking read/write and memory service. Mem-
ories are modeled as SystemC modules with a local array. Transducers are modeled as
SystemC modules with local buffer and controller threads for each bus interface.

Figure 3 shows the TLM of the MP3 Decoder. Processes Left and Right DCT are
mapped to the HW units (IP1 and IP2), while all other processes reside in a SW core
(CPU) model. The route between the core and the HW units includes two UBCs and
a Transducer. Access to units from the SW core is modeled with Channel API that
encapsulate routing and packeting methods. These methods in turn are implemented
with the UBC functions. Routing includes programming the Transducer with encoded
route using UBC write method. Packeting divides the message into data packets of
selected size. Since multiple processes are mapped to the SW core, a dynamic scheduler
model that exports a threading API emulates processor multitasking.

Channels between processes in the SW core are implemented with an inter-process
communication (IPC) model. The IPC and scheduler model are only core dependent
and can be included into the TLM from a library. However, the external communication
code is application, platform and core dependent. Therefore, its has to be generated for
every communication change in the design.

3.4 Pin-Cycle Accurate Model

The TLM is refined into a PCA model that is used for board implementation. Board
design tools such those from Xilinx and Altera can be used to convert PCAMs into
bitstreams for board implementation. Board debugging tools can then be used to run
and debug the design in real time.

Figure 4. shows the PCAM of the MP3 Decoder. The platform consisting of one
SW core and two IP units connected with two buses and a transducer is now modeled in

Model Based Synthesis of Embedded Software 27

Fig. 4. PCAM refined from TLM for board prototyping

synthesizable RTL. The six MP3 Decoder processes mapped to a SW core are compiled
with the appropriate C compiler (e.g. Xilinx compiler for Microblaze core) and linked
with the system SW libraries for download. The processes mapped to hardware can be
either synthesized using C-to-RTL tools or replaced with the respective RTL IP. The
system SW stack includes the threading and IPC libraries of the RTOS, and the external
communication library generated by our synthesis tool. The RTOS itself may consist of
several other services such as file handling, memory management, standard C library,
networking and so on.

The communication SW library consists of four layers as shown in Figure 4. The
lowest layer consists of a set of interrupt handlers (IHs) and memory access functions.
Each application level handshake channel requires synchronization that may be im-
plemented as interrupt or polling. For interrupt based synchronization an IH is imple-
mented per handshake channel. For polling implementation, a memory mapped flag is
implemented in the slave device that is periodically checked by the master SW core.
The memory access functions also provide basic IO to the peripherals. The synchro-
nization and data transfer layer consists of C methods that use the IHs and memory
access methods to manage packet level synchronization and bus word transfers. The
higher level layers for routing and packeting and the channel API are imported directly
from the TLM. In summary, the communication in PCAM is implemented with core
specific C methods as opposed to SystemC kernel methods in TLM.

4 Embedded SW Generation

In this section we describe the embedded SW synthesis and code generation from a
set of design parameters. The design parameters are determined from the application
and platform decisions as well as core properties and are treated as constants for SW
code generation. Two layers of communication functions are generated,namely for rout-
ing/packeting and synchronization/transfer. These functions are specific to the interface
of the application process. An example shows a typical code synthesized for a Send
interface.

28 D.D. Gajski, S. Abdi, and I. Viskic

4.1 Communication Design Parameters

In order to automate the communication SW code generation, we define a set of com-
munication specific system parameters. Based on our platform template, explained in
Section 3.1, we define a Global Static Routing Table (GSRT). The GSRT stores the
mapping of each application level channel to a platform route. For each channel Ch,
routed through a transducer Tx, we define BufferSize(Tx, Ch) to be the buffer partition
size in bytes for Ch on Tx. We also define the transducer send and receive request buffer
addresses per channel as SendRB(Tx, Ch) and RecvRB(Tx, Ch), respectively. The above
parameters are required to generate routing and packeting layers for the SW core.

For each channel Ch, routed over a bus B, we define SyncType(B, Ch) to be the syn-
chronization method to be used for ch for the route segment at B. The two possible syn-
chronization methods are Interrupt and Polling. For direct memory accesses that do not
require routing through transducer, synchronization is not required. A synchronization
flag table is maintained for each core. Each channel Ch gets a unique entry SyncFlag Ch
in this table. For interrupt based synchronization, we also define a binding from the inter-
rupt source to the flag and the handler instance. For polling, the flag is bound to an address
in the slave PE. Finally, for the data transfer implementation, we define the bus word size
and the low to high address range for each channel Ch on bus B as AR(B, Ch). For each
SW core we also define WordSize as the number of bytes per word.

4.2 Routing and Packeting

The communication functions are synthesized for each interface i that is bound to a
channel Ch. Since we allow only static routing, a route object Rt is stored in the GSRT
corresponding to each channel. Note that the GSRT does not need to be part of the com-
munication library, since the routing per channel is static. The route for Ch determines
the channel packet size as follows:

PktSz = Min (∀Tx ∈ Rt, BufferSize(Tx, Ch))

Hence, packet size is the largest data size that can fit into any transducer buffer alloca-
tion for Ch. Again, note that PktSz is a constant per channel, due to static routing.

The code generated for the interface communication method is a do-while loop, with
a temporary variable to keep track of already sent/received data. A lower level method
i SyncTr is called by the routing/packeting layer to synchronize with the corresponding
process and send or receive each packet.

4.3 Synchronization and Transfer

The routing of channel Ch determines the synchronization code generated inside the
i SyncTr method. Given the route object Rt, as obtained from the GSRT, we determine
the first bus B in Rt. We also determine if Rt contains any transducers. If so, we assign
Tx to be the first transducer in Rt. The first step of packet synchronization is top make
a transducer request for the transaction. This is done by generating code to write the
packet size (in bytes) into the request buffer at the address given by the parameter
SendRB(Tx, Ch) or RecvRB(Tx, Ch), depending on the transaction type. Once the

Model Based Synthesis of Embedded Software 29

Fig. 5. Embedded SW code example

request is written, the transducer initiates lower level synchronization via interrupt or
polling, just like any other slave core.

Lower level synchronization is implemented by generating code for busy waiting
over flag SyncFlag Ch in the i SyncTr method. The flag is either set by the interrupt
handler for Ch or by the corresponding slave core, in case of polling. The busy-wait
code is followed by resetting the synchronization flag. Finally, data transfer is per-
formed by generating a call to the core-specific WrMem or RdMem functions. These
functions write or read data of given bytes using bus transactions of size WordSize. The
starting address of the transfer is obtained from the address range AR(B,Ch).

Figure 5 shows an example for the embedded SW code generated for send method of
interface i. The sender process is mapped to a SW core, and its interface i is connected
to bus B. Interface i is bound to channel Ch that is routed over B and transducer Tx
and onto the destination core. Interrupt signal (Interrupt) from the transducer to the SW
core is used for synchronization, and is bound to handler IH Ch and flag SyncFlag Ch.

5 Experimental Results

Figure 6 shows a multi-core design with an MP3 decoder application mapped to a plat-
form consisting of one SW core (Microblaze) and four HW cores (Left/Right DCT and
IMDCT) used as accelerators. The HW cores use a DoubleHandshake (DH) Bus in-
terface, while the SW core is connected to the Open Peripheral Bus (OPB). Since the
two bus protocols are incompatible, a transducer is used to interface between the cores.
The block diagram of the stereo MP3 application with left and right channel decoding
blocks is shown inside Microblaze.

We created four mappings of the application, that we refer to as SW+1DCT, SW+2D
CT, SW+2IMDCT and SW+2DCT+2IMDCT, with parts of the application mapped to
the hardware accelerators, as indicated by the mapping name. As the DCT and IMDCT

30 D.D. Gajski, S. Abdi, and I. Viskic

Fig. 6. MP3 Decoder Platform: SW + 2 DCT + 2 IMDCT

processes are moved from SW core to the HW cores, the inter-core bidirectional chan-
nels are routed over the OPB, DH buses and transducer Tx. The communication SW
on Microblaze for PCAMs of the different designs are generated using our SW syn-
thesis tool. Xilinx EDK [6] is used to convert our generated PCAMs into bitstream for
implementation on the FF896 Virtex-II device. The decoding performance for all the
synthesized designs is measured with an OPB timer on the board, using a common
MP3 input file.

Table 1 shows a comparison between manually implemented and automatically syn-
thesized PCAMs using quality metrics of SW code size and communication delay. It
can be seen that the synthesized SW binary is only marginally larger than manual
implementation (between 1-4%). However, the performance of the synthesized code,
as measured by the on-chip timer, is 6-9% better than manual implementation. The
code quality difference was because the manual implementation shared the synchro-
nization function for different application channels, while the synthesized code had
unique synchronization function for each channel. Therefore, the manual code had
fewer total instructions, but incurred more instruction fetches for each communication
call at run-time.

Table 1. Comparison of manual vs. synthesized PCAMs of the MP3 Decoder

Design Code size(in bytes) Total comm. delay Total comm.
(% diff.) (in cycles) (% diff.) delay (in ms)

SW+1DCT 171,362 957,060 35.45
Manually SW+2DCT 160,640 1,914,120 70.89
implemented SW+2IMDCT 163,492 1,875,588 69.46
PCAM SW+2DCT+2IMDCT 153,420 3,789,708 140.36

SW+1DCT 172,072 (+4.14%) 949,932 (-7.44%) 35.18
Automatically SW+2DCT 161,280 (+3.98%) 1,899,864 (-7.44%) 70.04
generated SW+2IMDCT 164,132 (+3.91%) 1,863,972 (-6.19%) 69.04
PCAM SW+2DCT+2IMDCT 153,624 (+1.33%) 3,763,836 (-6.83%) 139.40

Model Based Synthesis of Embedded Software 31

Table 2. Comparison of manual vs. synthesized communication SW

Design Code size (in lines) Development Time
(% diff.) (% diff.)

SW+1DCT 162 5 h + 2 h
Manual SW+2DCT 192 5 h + 2.5 h
communication SW+2IMDCT 192 5 h + 2.5 h
library SW+2DCT+2IMDCT 252 5 h + 3.5 h

SW+1DCT 168 (+3.70%) 5 h + 0.14 s (-28%)
Synthesized SW+2DCT 208 (+8.33%) 5 h + 0.14 s (-33%)
communication SW+2IMDCT 208 (+8.33%) 5 h + 0.14 s (-33%)
library SW+2DCT+2IMDCT 288 (+13.83%) 5 h + 0.14 s (-37%)

Table 2 shows a comparison of lines of code between manual and synthesized em-
bedded SW. Due to difference in synchronization implementation, as mentioned above,
we can see that synthesized source code is marginally larger than manual code. The de-
velopment time includes the 5 hours that it took to define the application level channels
and the design parameters. It took 2-4 hours to implement and test the manual commu-
nication code. In contrast, with the given parameters, our synthesis tool generated the
embedded SW library in fraction of a second. This resulted in an overall development
time savings of 33% on average.

6 Conclusions

We presented a model based technique and methodology for synthesis of embedded
SW for heterogeneous multi-core systems. The novelty of our work lies in defining
embedded system models at different abstraction level with clear synthesis semantics.
Application level models were defined as a set of processes communicating via mes-
sage passing channels and shared variables. A well defined, yet highly flexible, platform
template and associated design parameters were presented. We also presented a synthe-
sis procedure to generate core, application and platform specific embedded SW for the
design. Synthesis results for an MP3 decoder example demonstrated the applicability
of our technique for large industrial size embedded systems. Our automatic embedded
SW synthesis reduces overall design time, while consistently providing better perfor-
mance and negligible increase in code size over manual implementation. For future
work, we are investigating SW synthesis from dependability and security oriented ap-
plication models. We are also working extending our model based design framework
with application and platform templates for real-time architectures such as time trig-
gered network.

Acknowledgments. This work builds on several years of system level design research
at Center for Embedded Computer Systems, UC Irvine. We wish to thank Hansu Cho
for providing the Verilog implementation of transducers, Pramod Chandraiah for the C
reference of the MP3 Decoder, and Gunar Schirner for discussions on hardware depen-
dent software.

32 D.D. Gajski, S. Abdi, and I. Viskic

References

1. Altera SOPC Builder, http://www.altera.com/
2. Automotive Open System Architecture, http://www.autosar.org/
3. Embedded System Environment, http://www.cecs.uci.edu/∼ese/
4. OSEK, http://www.osek-vdx.org/
5. SystemC, OSCI, http://www.systemc.org/
6. Xilinx Embedded Development Kit, http://www.xilinx.com/
7. Balarin, F., et al.: Hardware-Software Co-Design of Embedded Systems: The POLIS Ap-

proach. Kluwer, Dordrecht (1997)
8. Cortadella, J., et al.: Task generation and compile time scheduling for mixed data-control

embedded software. In: Proceedings of the Design Automation Conference (June 2000)
9. Gajski, D., Zhu, J., Domer, R., Gerstlauer, A., Zhao, S.: SpecC: Specification Language and

Methodology. Kluwer Academic Publishers, Dordrecht (January 2000)
10. Gerstlauer, A., Shin, D., Peng, J., Domer, R., Gajski, D.D.: Automatic, layer-based genera-

tion of system-on-chip bus communication models. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 26(9) (September 2007)

11. Guthier, L., Yoo, S., Jerraya, A.: Automatic generation and targeting of application specific
operating systems and embedded systems software. In: Proceedings of the Design Automa-
tion and Test Conference in Europe, pp. 679–685 (2001)

12. Herrera, F., Posadas, H., Snchez, P., Villar, E.: Systematic embedded software generation
from systemc. In: Proceedings of the Design Automation and Test Conference in Europe
(2003)

13. Kopetz, H., Obermaisser, R., Salloum, C.E., Huber, B.: Automotive software development
for a multi-core system-on-a-chip. In: SEAS 2007: Proceedings of the 4th International
Workshop on Software Engineering for Automotive Systems, Washington, DC, USA, p. 2.
IEEE Computer Society, Los Alamitos (2007)

14. Krause, M., Bringmann, O., Rosenstiel, W.: Target software generation: an approach for
automatic mapping of systemc specifications onto real-time operating systems. Design Au-
tomation for Embedded Systems 10(4) (December 2005)

15. Makkelainen, T.: Hds from system-house perspective. In: Hardware dependent Software
Workshop at DAC (2007)

16. Nacul, A.C., Givargis, T.: Lightweight multitasking support for embedded systems using the
phantom serializing compiler. In: Proceedings of the Design Automation and Test Confer-
ence in Europe, pp. 742–747 (2005)

17. Pasricha, S., Park, Y.-H., Kurdahi, F.J., Dutt, N.: System-level power-performance trade-offs
in bus matrix communication architecture synthesis. In: CODES+ISSS 2006: Proceedings of
the 4th international conference on Hardware/software codesign and system synthesis, pp.
300–305. ACM, New York (2006)

18. Pinto, A., Carloni, L.P., Sangiovanni-Vincentelli, A.L.: Constraint-driven communication
synthesis. In: Proceedings of the Design Automation Conference, pp. 783–788 (2002)

19. Ritz, S., et al.: High-level software synthesis for the design of communication systems. IEEE
Journal on Selected Areas in Communications (April 1993)

20. Ryu, K.K., Mooney, V.: Automated bus generation for multiprocessor soc design. In: Pro-
ceedings of the Design Automation and Test Conference in Europe, p. 10282 (2003)

21. Sangiovanni-Vincentelli, A., et al.: A next-generation design framework for platform-based
design. In: Conference on Using Hardware Design and Verification Languages (DVCon)
(February 2007)

http://www.altera.com/
http://www.autosar.org/
http://www.cecs.uci.edu/~ese/
http://www.osek-vdx.org/
http://www.systemc.org/
http://www.xilinx.com/

Model Based Synthesis of Embedded Software 33

22. Schirner, G., Gerstlauer, A., Dömer, R.: Automatic generation of hardware dependent soft-
ware for mpsocs from abstract system specifications. In: Proceedings of the Asia-Pacific
Design Automation Conference, pp. 271–276 (2008)

23. Yu, H., Dömer, R., Gajski, D.: Embedded software generation from system level design
languages. In: Proceedings of the Asia-Pacific Design Automation Conference, pp. 463–468
(2004)

	Model Based Synthesis of Embedded Software
	Introduction
	Related Work
	Model Based Design with ESE
	Platform Template
	Application Model
	Transaction Level Model
	Pin-Cycle Accurate Model

	Embedded SW Generation
	Communication Design Parameters
	Routing and Packeting
	Synchronization and Transfer

	Experimental Results
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

