
Efficient Management of Complex Striped Files
in Active Storage�

Juan Piernas1,2 and Jarek Nieplocha1

1 Pacific Northwest National Laboratory (USA)
2 Universidad de Murcia (Spain)

piernas@ditec.um.es, jarek.nieplocha@pnl.gov

Abstract. Active Storage provides an opportunity for reducing the
bandwidth requirements between the storage and compute elements of
current supercomputing systems, and leveraging the processing power of
the storage nodes used by some modern file systems. To achieve both ob-
jectives, Active Storage allows certain processing tasks to be performed
directly on the storage nodes, near the data they manage. However, Ac-
tive Storage must also support key requirements of scientific applications.
In particular, Active Storage must be able to support striped files and
files with complex formats (e.g., netCDF). In this paper, we describe
how these important requirements can be addressed. The experimental
results on a Lustre file system not only show that our proposal can re-
duce the network traffic to near zero and scale the performance with the
number of storage nodes, but also that it provides an efficient treatment
of striped files and can manage files with complex data structures.

1 Introduction

Recent improvements in storage technologies in terms of capacity as well as cost
effectiveness, and the emergence of high-performance interconnects, have made
it possible to build systems of unprecedented power by connecting thousands of
compute and storage nodes. However, for large-scale scientific simulations that
use these environments, the efficient management of enormous and increasing
volumes of data remains a challenging problem.

On the other hand, several parallel/distributed file systems have been recently
developed for high-performance and high-data volume computing systems. Some
of these file systems, such as Lustre [1] and PVFS [2], use mainstream server
computers as storage nodes, that is, computers that contain significant CPU
and memory resources, several disks attached to them, and run a general-purpose
operating system. Although the combined computing capacity of these nodes can

� This work was supported by the DoE, Office of Advanced Scientific Computing Re-
search, at the Pacific Northwest National Laboratory (a multiprogram national labo-
ratory operated by Battelle for the U.S. DoE under Contract DE-AC06-76RL01830),
and by the Spanish MEC and European Comission FEDER funds under grants
“Consolider Ingenio–2010 CSD2006–00046”, and “TIN2006–15516–C04–03”.

E. Luque, T. Margalef, and D. Beńıtez (Eds.): Euro-Par 2008, LNCS 5168, pp. 676–685, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

piernas@ditec.um.es
jarek.nieplocha@pnl.gov

Efficient Management of Striped Files in Active Storage 677

be considerable in many high performance systems, it is exploited for storing and
accessing but hardly ever for processing data.

One approach to reduce the bandwidth requirements between the compute
and storage elements, and to leverage the processing power of the latter, is to
move appropriate processing tasks to the storage nodes. We call this approach
Active Storage in the context of parallel file systems [3][4]. Active Storage is
similar to the active disk concept proposed for hard drives [5][6][7][8], but with
two important differences: (1) storage devices are now full-fledged computers,
and (2) they include a feature-rich environment provided typically by a Linux
operating system. These two factors make it possible to run regular application
codes on the storage nodes.

In this paper we show how we have enhanced our previous implementation of
Active Storage [4] to support several key features which, until the current work,
have been lacking in virtually all existing proposals of this technology. Specifically,
we focus on striped files with either a simple format (e.g., a list of chunk-aligned
records) and a more complex format as netCDF, which is very common for data
exchange in some scientific applications. In the former case, our implementation
provides a framework that makes it possible to transparently run unmodified pro-
grams to process the records in a striped file. In the latter case, the program to
be run on the storage nodes must be aware of the format and striping of the in-
put file. To address this requirement we enhanced Active Storage by introducing
a new component, a mapper, to optimize the processing of the striped file.

We have evaluated our implementation of Active Storage by using the Lustre
parallel file system and two application kernels. The experimental results show
that our design achieves the two main objectives of Active Storage for both
striped and non-striped files: it reduces the network traffic to near zero for test
workloads, and can take advantage of the extra computing capacity offered by
the storage nodes at the same time. Moreover, they prove that Active Storage
can efficiently manage striped files, and that high performance can be achieved
even for files with complex data structures.

The rest of the paper is organized as follows. Section 2 provides an overview
of work related to the active disks’ concept. Section 3 describes the architec-
ture of our proposal for Active Storage, and the handling of non-striped files.
The treatment of (complex) striped files is explained in Section 4. Experimental
results are presented in Section 5. Conclusions appear in Section 6.

2 Related Work

The idea of intelligent storage was developed by several authors at the end of the
90’s, with some similar ideas proposed even earlier in the 80’s in the database
world [9]. Riedel et al. [8] propose a system, called Active Disks, which takes
advantage of the processing power on individual disk drives to run application-
level code. Keeton et al. [7] present a computer architecture for decision support
database servers that utilizes “intelligent” disks (IDISKs). Acharya et al. [5]
evaluate the active disk architectures, and propose a stream-based programming

678 J. Piernas and J. Nieplocha

model for them. Lim et al. [10] propose an Active Disk File System (ADFS) where
many of the responsibilities of a traditional central file server are offloaded to
the active disks. Chiu et al. use the previous ideas of Active Disks and IDISKs
to design a distributed smart disk architecture [6].

The object-based storage device (OSD) [11][12] is another concept which profits
the processing power of the disk drives. Schlosser and Iren [13] suggest that,
with more processing capability in the storage devices, it would be possible
to delegate some database-specific tasks to the OSDs, in an active disk fashion.
Du [14] merges the OSD and active disk concepts in order to build the intelligent
storage devices one. An intelligent storage device is directly attached to the
network, supports the OSD concept, and supports the active disk concept.

Felix et al. [3] present a first real implementation of Active Storage for the
Lustre file system. They provides a kernel-space solution with the processing
component parts implemented in the user space. Our recent implementation
of Active Storage [4], however, offers a solution that is purely in user space.
This makes our proposal more flexible, portable, and readily deployable, while
it achieves the same or even better performance than Felix’s implementation.

None of the previous papers have described a deployable solution that ad-
dresses the practical needs of many large scale scientific applications. For ex-
ample, they have not provided means to deal with striped files. Moreover, the
design principles of some approaches also hinder the development of possible
enhancements to deal with striped files. The current paper, however, makes a
key contribution to the field by showing that, in fact, Active Storage can be
implemented efficiently for striped files even for complex data formats of the
user data. This is possible by taking advantage of the user-space approach and
filesystem-wide data view of our proposal.

3 Active Storage Overview

Figure 1(a) shows a cluster without Active Storage, whereas Figure 1(b) depicts
our approach. Without Active Storage, many data-intensive processing tasks are
performed on the compute nodes, producing a high network traffic and wasting
the processing power of the storage node. Active Storage, however, allows some
of those processing tasks to be performed on the storage nodes, reducing the
network traffic, and profiting the CPU time of these nodes.

In our proposal, the compute and storage nodes are all clients of the parallel
file system. Since the storage nodes are clients, they can access all the files in
the file system and, specifically, the files stored locally. One of the clients will
run asmaster, a program which receives a rule describing an Active Storage
job and performs the actions contained in it. A rule is an XML file which can
specify many actions to perform, but which basically contains the following in-
formation: a file pattern specifying the files to process, a program path, and
program arguments (if any). In the storage nodes, there also exists an Active
Storage Runtime Framework (ASRF), a set of programs which assist asmaster
in executing a rule, i.e., an Active Storage job.

Efficient Management of Striped Files in Active Storage 679

(a) (b)

Fig. 1. (a) A traditional system without Active Storage. (b) Overview of the Active
Storage architecture.

The files to be processed by an Active Storage job can already exist, or they
can be created by a parallel application running on the compute nodes at the
same time as the Active Storage job is active. In the latter case, the synchroniza-
tion between the parallel application in the compute nodes, and the processing
components in the storage nodes is important [4]. To simplify the implemen-
tation of the processing components, we have built a dynamic library, libas,
which contains functions that hide the synchronization details. This library will
also play a fundamental role in providing transparent access to striped files.

The processing of non-striped files is simple. For every matching file, asmaster
will remotely run the given program as a processing component on the storage
node where the file resides. If the processing components create output files,
it is possible to instruct a rule to locally create those files. Also, if there are
thousands of files which match the pattern, Active Storage will create thousands
of processing components, one per file, at the same time.

Note that our Active Storage approach is quite different from running a par-
allel application on the storage nodes [4]. A major problem for a regular parallel
application is that the application should be aware of the file distribution and the
properties of the filesystem. Also, the number of files per storage node can change
during the course of the time, and files can be unevenly distributed. Therefore, the
number of “processing components” of the parallel application per storage node
should be variable, and could change from run to run, or during the same run.

4 Management of Complex Striped Files

This section describes extensions to the Active Storage architectures to support
striped files. This includes the management of striped files with a simple data
format as well as files which have a complex data structure, such as netCDF.

680 J. Piernas and J. Nieplocha

4.1 Striped Files with Chunk-Aligned Records

In the baseline Active Storage model described in the previous section, we have
assumed that files to be processed are not striped, i.e., each file is stored in only
one storage node. Many parallel applications, however, stripe files across several
storage nodes in order to benefit from the increased aggregate bandwidth.

To deal with striped files, our current approach launches a processing com-
ponent per storage node used by the matching file, and makes every processing
component process only the file chunks stored in its own node. If the processing
components write to an output file, the output file must be created with the
same striping pattern as the input file, and every processing component must
write to only the file chunks stored in its corresponding node. Otherwise, the
I/O operations would not be entirely local.

(a) (b)

Fig. 2. The libas library. (a) Transparent access, and (b) non-transparent access to
striped files.

With fixed-length, chunk-aligned records, Active Storage can provide trans-
parent access to the striped files by exposing the different chunks of a file stored
in the same node as a single, contiguous file. Active Storage uses the aforemen-
tioned libas dynamic library to provide that transparent access. The mechanism
implemented is depicted in Figure 2(a). Using several environment variables, the
Active Storage Runtime Framework passes to the libas library striping infor-
mation about the striped files which must transparently be accessed. When a
processing component opens a file, libas checks if the file is one of the files it
must manage. If so, libas will intercept any operation on that file in order to
only read and write the local chunks of the file.

The single, contiguous file’s abstraction provided by Active Storage allows a
user to run programs which access files sequentially as processing components,
even when the input and output files are striped.

Efficient Management of Striped Files in Active Storage 681

4.2 Striped Files with Unaligned Records

There are cases where the above requirement of fixed-length, chunk-aligned
records is not met. In those cases, Active Storage cannot provide a transpar-
ent access to the striped files. Instead, our system passes striping information
to the processing components (see Fig. 2(b)), which must decide by themselves
which data in the local chunks, and other remote chunks, they have to access.

Our design provides a third option to deal with striped files which can not be
transparently accessed. In some cases, the amount of output data is much greater
or smaller than the amount of input data. Although the input and output files
could use the same striping, the output records would not be typically written
to the same storage node as their corresponding input records. In those cases,
we can run a processing component per chunk of the input file. The output data
can then be written to a local non-striped file whose name will have the absolute
number of the input chunk. Certainly, there will not be a single “output file”
but a set of sub-files, which will be accessed by a subsequent process in the order
given by the sequence of chunk numbers. In this way, the write operations will
be local, which is one of the primary design objectives for Active Storage.

4.3 Mapper Component for Processing of Complex Data Formats

Until now, we have assumed that all the data in the input files is processed. If
Active Storage processing applies only to a part of the data in the files, it becomes
necessary to augment the Active Storage architecture with a new element, the
mapper component, that interacts with asmaster. This new component is a
program which receives a file and its striping information as arguments, and
return a list (a map) of the storage nodes which contain the data to process.

The mapper program also allows us to handle files with special data formats.
For example, in our project we developed a mapper for netCDF [15] files to deal
with climate applications. Our netCDF mapper receives as arguments a file, its
striping information and the variable that the processing components will access;
then, it reads the netCDF header of the file to locate the variable in the file, and
uses the striping information to, finally, build the map of storage nodes. With this
approach, the processing is optimized because only the relevant storage nodes
run processing components (see Figure 3). Once asmaster launches the different
processing components, these again read the netCDF header of the file and use
its striping information to locate the part of the file that they must process.

5 Evaluation

Our system under test has 17 nodes: 8 compute nodes, 1 MDS/MGS server and
8 OSTs (the storage nodes in Lustre). All the nodes are identical, and their
hardware elements are: two Dual Core Intel Xeon 5160 CPUs, 4 GB of RAM,
a Dual Port MT25208 NIC, a Seagate ST3250624AS (250 GB) for the OS, and
a Seagate ST3500630AS (500 GB) for Lustre. We also use a 24-ports MT47396
Infiniscale-III switch, Lustre 1.6.1 and Linux kernel 2.6.16.42.

682 J. Piernas and J. Nieplocha

Fig. 3. The mapper application for netCDF files

We have compared the performance achieved by Active Storage with that
obtained by a system without Active Storage. Our comparison uses two applica-
tions. The first ones, DSCAL, reads an input file of doubles in native format (8
bytes), and multiply every number by a scalar. The resulting doubles are written
to an output file. In our experiments, this application has to process 16 input
files of 1 GB each, and produce 16 output file, also of 1 GB each.

The second application, ClimStat (Climate Statistics), is used to compute
the mean of a float variable in a netCDF file. The program receives the netCDF
file, the variable and the striping of the file. With the striping information, the
program determines which values of the variable are locally stored in its storage
node, adds those values, and returns the sum and the number of added values
(i.e., the output data is only a couple of numbers). In our experiments, ClimStat
has to add the values of a record variable with 13,762,560 float elements (52.5
MB of data) split into 5 records which are spread across a 5.3 GB netCDF file.
In total, there are 16 netCDF files and 840 MB of data to process. These files
are the output of a Global Cloud Resolving Model simulation [16].

We have evaluated the performance of Active Storage for 1, 2, 4, and 8 storage
nodes. Every file is striped across all the OSTs with a stripe size of 1MB. The
achieved results have been compared with those obtained by a system without
Active Storage and 1, 2, 4, and 8 compute/storage nodes With Active Storage,
DSCAL and ClimStat run as processing components on the storage nodes. It is
interesting to note that we use the same DSCAL code, and the same ClimStat
code, for all the processing components; it does not matter the number of storage
nodes. Without Active Storage, the applications run on the compute nodes.

5.1 Experimental Results for DSCAL

Figure 4(a) shows the overall execution time for DSCAL. This is the time to
carry out the entire job, either in the compute or storage nodes, and includes the
time taken to launch the different processing components, transfer data (when
needed), and wait for the completion of the processes.

Efficient Management of Striped Files in Active Storage 683

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1 2 3 4 8

T
im

e
(in

 s
ec

on
ds

)

Number of OST’s

(a) Application Time

No AS
AS

 0.1

 1

 10

 100

 1000

 10000

 100000

 1 2 3 4 8

N
et

w
or

k
tr

af
fic

 (
to

ta
l M

B
, l

og
 s

ca
le

)

Number of OST’s

(b) Bytes Transmitted and Received

TX - No AS
RX - No AS

TX - AS
RX - AS

Fig. 4. Results for DSCAL in a non-saturated system

As we can see, there are no noticeable differences between running the ap-
plication on the compute nodes and on the storage nodes. Since the number of
nodes is small, compared to the disk speed our Infiniband interconnect does not
become a bottleneck, hence the result. However, the absence of differences is im-
portant because it means that the overhead of the processing components on the
storage nodes is small, and does not downgrade the performance of Lustre. An-
other important benefit, is that Active Storage allows to move the processing off
the critical path: the application, after initiating the Active Storage processing,
can continue instead of waiting for the time consuming I/O operations.

We can also see that the application time is divided by two when the number
of OSTs doubles. This proves that Active Storage provides DSCAL with an
environment where its performance scales with the number of storage nodes.
This also proves that our proposal can handle stripes files efficiently.

Figure 4(b) displays the bytes transmitted and received in DSCAL. Unlike the
application time, there is a huge difference between a system with Active Storage
and another without it. With Active Storage, the network traffic is very small,
while it can be very high without Active Storage, where the interconnect can
become a bottleneck if there are hundreds or thousands of nodes. We can also
see in the figure that the bytes transmitted and received are roughly the same.
This result is expected because the application reads from and writes to files of
the same size. Note that the network traffic smoothly increases with the number
of nodes. This is mainly due to the meta-data operations (when processing a file,
all the nodes have to obtain its meta-data information from the MDS server).

5.2 Experimental Results for ClimStat

In general, the results obtained by ClimStat are quite similar to those achieved
by DSCAL, but there are some details to be explained. By coincidence, in our
experiments all the storage nodes roughly have the same amount of data of the
variable whose mean must be computed. Therefore, all of them take part in the
task. With a larger number of storage nodes, other files or a different variable,
this might not be true.

684 J. Piernas and J. Nieplocha

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 8

T
im

e
(in

 s
ec

on
ds

)

Number of OST’s

(a) Application Time

No AS
AS

 0.1

 1

 10

 100

 1000

 1 2 3 4 8

N
et

w
or

k
tr

af
fic

 (
to

ta
l M

B
, l

og
 s

ca
le

)

Number of OST’s

(b) Bytes Transmitted and Received

TX - No AS
RX - No AS

TX - AS
RX - AS

Fig. 5. Results for ClimStat in a non-saturated system

The application time for ClimStat is presented in Figure 5(a). In this case,
the application times are much smaller than in DSCAL. However, similarly to
DSCAL, there are no noticeable differences between running the application on
the compute nodes and running the application on the storage nodes because
the Infiniband interconnect does not become a bottleneck.

The network traffic is shown in Figure 5(b). As we can see, the amount of
bytes received by every storage node is small, both with and without Active
Storage. The reason is, as we have explained before that ClimStat produces only
two numbers as output, which represent a few bytes. Therefore, we cannot expect
any appreciable difference. The findings are different with respect to the number
of bytes transmitted. In a system without Active Storage, the storage nodes
have to send the data to the compute nodes. With Active Storage, however, this
network traffic is very small.

Figure 5(b) also shows that, with Active Storage, the network traffic smoothly
increases with the number of nodes. Like in DSCAL, this is due to the meta-data
operations, but, for ClimStat, it is also due to the reading of the netCDF header.
This header is small in our case, and is contained in only one storage node which
has to send a copy to the other nodes. Without Active Storage, the header must
also be sent to all the compute nodes, although its impact is small because of
the high network traffic caused by the transmission of the temperature data.

The most important conclusion from the evaluation of the ClimStat applica-
tion is not only that Active Storage is able to leverage the processing power of
the storage nodes and considerably reduce the network traffic at the same time,
but also that it can process data stored in files with a given (complex) format,
like netCDF, and not evenly distributed among the storage nodes.

6 Conclusions

The current paper addresses two important requirements that were not consid-
ered in the previous work on Active Storage: striped files and complex scientific
data formats such as netCDF. We have described how these important require-
ments can be addressed while achieving high performance. The experimental
results on a Lustre file system not only show that our approach can reduce the

Efficient Management of Striped Files in Active Storage 685

network traffic to near zero, and profit the extra computing capacity offered
by the storage nodes at the same time, but also that it provides an efficient
treatment of striped files and is able to manage files with complex data struc-
tures. We have also improved the usability aspects of Active Storage, providing
a scientific-friendly environment to specify, in a simple way, the job to carry out.

References
1. Cluster File Systems Inc.: Lustre: A scalable, high-performance file system (2002),

http://www.lustre.org
2. Carns, P.H., Ligon III, W.B., Ross, R.B., Thakur, R.: PVFS: a parallel file system for

Linux clusters. In: Proc. of 4th Annual Linux Showcase and Con., pp. 317–327 (2000)
3. Felix, E.J., Fox, K., Regimbal, K., Nieplocha, J.: Active Storage processing in a

parallel file system. In: Proc. of the 6th LCI International Conference on Linux
Clusters: The HPC Revolution (2006)

4. Piernas, J., Nieplocha, J., Felix, E.J.: Evaluation of Active Storage strategies for
the Lustre parallel file system. In: Proc. of 2007 Supercomp. Conf. (SC 2007) (2007)

5. Acharya, A., Uysal, M., Saltz, J.: Active disks: Programming model, algorithms
and evaluation. In: Proc. of the ACM ASPLOS Conference, pp. 81–91 (1998)

6. Chiu, S.C., keng Liao, W., Choudhary, A.N.: Design and evaluation of distributed
smart disk architecture for I/O-intensive workloads. In: Sloot, P.M.A., Abramson,
D., Bogdanov, A.V., Gorbachev, Y.E., Dongarra, J., Zomaya, A.Y. (eds.) ICCS
2003. LNCS, vol. 2660, pp. 230–241. Springer, Heidelberg (2003)

7. Keeton, K., Patterson, D.A., Hellerstein, J.M.: A case for intelligent disks (IDISKs).
SIGMOD Record 24(7), 42–52 (1998)

8. Riedel, E., Gibson, G., Faloutsos, C.: Active storage for large-scale data mining and
multimedia. In: Proc. of the 24th Int. Conf. on Very Large Data Bases (VLDB),
pp. 62–73 (1998)

9. DeWitt, D.J., Hawthorn, P.: A performance evaluation of database machine archi-
tectures. In: Proc. of the 7th Int. Conf. on Very Large Data Bases (VLDB), pp.
199–214 (1981)

10. Lim, H., Kapoor, V., Wighe, C., Du, D.H.: Active disk file system: A distributed,
scalable file system. In: Proc. of the 18th IEEE Symposium on Mass Storage Sys-
tems and Technologies, San Diego, pp. 101–115 (2001)

11. Gibson, G.A., Nagle, D.F., Amiri, K., Chang, F.W., Feinberg, E.M., Gobioff, H.,
Lee, C., Ozceri, B., Riedel, E., Rochberg, D., Zelenka, J.: File server scaling with
network-attached secure disks. In: Proc. of the 1997 ACM SIGMETRICS Intl.
Conf. on Measurement and Modeling of Comp. Systems, pp. 272–284 (1997)

12. Mesnier, M., Ganger, G., Riedel, E.: Object-based storage. IEEE Communications
Magazine 41(8), 84–90 (2005)

13. Schlosser, S.W., Iren, S.: Database storage management with object-based storage
devices. In: Proc. of the First International Workshop on Data Management on
New Hardware (DaMoN) (2005)

14. Du, D.H.: Intelligent storage for information retrieval. In: Proc. of the Intl. Confer-
ence on Next Generation Web Services Practices (NWeSP 2005), pp. 214–220 (2005)

15. Rew, R.K., Davis, G.P.: NetCDF: An interface for scientific data access. IEEE
Computer Graphics and Applications 10(4), 76–82 (1990)

16. Schuchardt, K., Palmer, B., Daily, J., Elsethagen, T., Koontz, A.: IO strategies and
data services for petascale data sets from a global cloud resolving model. Journal
of Physics: Conference Series 78(012089) (2007)

http://www.lustre.org

	Efficient Management of Complex Striped Files in Active Storage
	Introduction
	Related Work
	Active Storage Overview
	Management of Complex Striped Files
	Striped Files with Chunk-Aligned Records
	Striped Files with Unaligned Records
	Mapper Component for Processing of Complex Data Formats

	Evaluation
	Experimental Results for DSCAL
	Experimental Results for ClimStat

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

