Skip to main content

M1 Heat Transfer to Finned Tubes

  • Reference work entry
  • First Online:
VDI Heat Atlas

Part of the book series: VDI-Buch ((VDI-BUCH))

Heat release and absorption from surfaces can be enhanced by fins. The fins are to be placed on the side of poorer heat transfer. Fins will be effective all the more as the ratio of the heat transfer coefficient from the side of better heat transfer to that of poorer increases.

Basic requirement for the following approach is an ideal contact between the fin base and tube or surface. The shown method has to be regarded as a first approach. It will not fit for abnormal dimensions or extremely high Reynolds numbers. Indispensable for such cases is the examination of appropriate literature and far reaching modeling related to experimental data.

A mean heat transfer coefficient has to be found and evaluated on the base of geometrically determined consideration. Therefore, the model cannot differentiate local changes in heat flux due to different temperatures over the fin caused by convection.

It is assumed that the direction of fluid flow corresponds to the orientation of the fins. Heat...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

3 Bibliography

  1. Brandt F (1988) VDI-Wärmeatlas, Mb. 5. Auflage

    Google Scholar 

  2. Gnielinski V, Zukauskas A, Skrinska A (1983) Heat exchanger design handbook. Hemisphere Publishing Corporation, New York

    Google Scholar 

  3. Wehle F (1980) Forsch.i.d.Kraftwerkstechn. S. 165/169

    Google Scholar 

  4. Wehle F (1983) Theoretische und experimentelle Untersuchung der Wärmeübertragung bei Rippenrohrbündeln und Einfluss der Temperaturabhängigkeit der Stoffwerte auf den Wärmeübergang; Fortschr.Ber. VDI, Reihe 6, Nr. 121. VDI-Verlag, Düsseldorf

    Google Scholar 

  5. Ebeling N, Schmidt KG (1994) Waermeleistung von Rippenrohr-Waermeaustauschern mit zusammenhaengenden Rippen; Brennst.-Waerme-Kraft 46(10):437–438

    Google Scholar 

  6. Brauer H (1961) Spiralrippenrohre für Querstrom-Wärmeaustauscher. Z. Kältetechnik 13:S. 274/279

    Google Scholar 

  7. Briggs DE, Young u. EH (1963) Eng Prog Sym Ser 59(41):S. 1/9

    Google Scholar 

  8. Schmidt Th. E (1963) Z. Kältetechik 15:S. 98

    Google Scholar 

  9. Schmidt Th. E (1963) Z. Kältetechik 15:S. 370/378

    Google Scholar 

  10. Schmidt Th. E (1966) Verbesserte Methoden zur Bestimmung des Wärmeaustausches an berippten Flächen; Kaeltetech Klim 18(4):135–138

    Google Scholar 

  11. Confidential industrial data for evaluation of Eqs. (15) and (16)

    Google Scholar 

  12. Handbuch HTFS AM1, Aug 85, commercial edition

    Google Scholar 

  13. Report ESG-4 HTRI, June 72, confidential

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag

About this entry

Cite this entry

Schmidt, K.G. (2010). M1 Heat Transfer to Finned Tubes. In: VDI Heat Atlas. VDI-Buch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77877-6_94

Download citation

Publish with us

Policies and ethics