Skip to main content

Engineered Barriers and Their Interaction with Rock

  • Chapter
  • First Online:
Geological Storage of Highly Radioactive Waste
  • 1056 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Jokes about little green men being created do not have to be taken seriously but it is clear that radiation can cause a special environment favouring changes in organic life forms.

  2. 2.

    The density is often expressed as “dry density” i.e. the ratio of the solid mineral content and the total volume including voids but with no water content.

References

  1. SKB, 2003. Planning report for the safety assessment SR-Can. SKB, Stockholm.

    Google Scholar 

  2. Svemar C, 2005. Cluster Repository Project (CROP). Final Report of European Commission Contract FIR1-CT-2000-20023, Brussels, Belgium.

    Google Scholar 

  3. Grauer R, 1986. Ueber moegliche Wechselwirkungen zwischen Verfuellmaterial und Stahlbehaelter in Endlager C. Interner Bericht 86-01, NAGRA, Baden, Schweitz.

    Google Scholar 

  4. Pusch R, 1994. Waste disposal in rock. Developments in Geotechnical Engineering, 76. Elsevier Publ. Co. ISBN: 0:444-89449-7.

    Google Scholar 

  5. Munier R, Follin S, Rhén I, Gustafson G, Pusch R, 2001. Projekt JADE, Geovetenskapliga studier. SKB R-01-32. SKB, Stockholm.

    Google Scholar 

  6. Sandström R, Wu R, 2007. Origin of the extra low creep ductility of copper without phosphorous. SKB TR-07-02.

    Google Scholar 

  7. Lönnerberg B, Larker H, Ageskog L, 1983. Encapsulation and handling of spent nuclear fuel for final disposal. SKB/KBS Technical Report 83-20. SKB, Stockholm.

    Google Scholar 

  8. Martin Burström, 2007. Personal communication

    Google Scholar 

  9. SKB, 1999. SR 97 – Post-closure safety. SKB Technical Report TR-99-06. SKB, Stockholm.

    Google Scholar 

  10. Pusch R, Yong RN, 2006. Microstructure of smectite clays and engineering performance. Taylor & Francis, London and New York. ISBN10: 0-415-36863-4.1

    Google Scholar 

  11. Kehres A, 1983. Isotherms de deshydratation des argiles. Energies d’hydratation – Diagrammes de pores surfaces internes et externes. Dr. Thesis, Université Paul Sabatier, Tolouse, France.

    Google Scholar 

  12. Tardy Y, Lesniak P, Duplay J, Proust R, 1980. Energies d’Hydratation des Argiles. Application a l’Hectorite. Bull. Mineral., Vol. 103 (pp. 217–223).

    Google Scholar 

  13. Gueven N, Huang W-L, 1990. Effects of Mg2+ and Fe3+ substitutions on the crystallization of discrete illite and illite/smectite mixed layers. Int. rep. Dept. Geosciences Texas Tech University, Exxon Production research Co, Houston, Texas.

    Google Scholar 

  14. Svemar C, 2005. Prototype repository project. Final Report of European Commission Contract FIKW-2000-00055, Brussels, Belgium.

    Google Scholar 

  15. Pusch R, 2001. Selection of THMCB models. Äspö Hard Rock Laboratory, Prototype Repository. Int. Progr. Report IPR-01-66. SKB, Stockholm.

    Google Scholar 

  16. Pusch R, Moreno L, Neretnieks I, 2001. Microstructural modelling of transport in smectite clay buffer. In Proc. Int. Symp. on Suction, Swelling, Permeability and Structure of Clays. K Adachi and M Fukue (Eds). Rotterdam/Brookfield: A A Balkema.

    Google Scholar 

  17. Pusch R, Adey R, 1986. Settlement of clay-enveloped radioactive canisters. Appl. Clay Science, Vol. 1 (pp. 253–365).

    Article  Google Scholar 

  18. Pusch R, Feltham P, 1980. A stochastic model of creep of soils. Géotechnique, Vol. 30, No. 4 (pp. 497–506).

    Article  Google Scholar 

  19. Feltham P, 1968. A stochastic model of creep. Phys. Stat. Solidi, Vol. 30 (pp. 135–146).

    Article  Google Scholar 

  20. Pusch R, 1984. Creep in rock as a stochastic process. Engineering Geology, Vol. 20 (pp. 301–310).

    Article  Google Scholar 

  21. Pytte AM, Reynolds RC, 1989. The thermal transformation of smectite to illite. In Thermal History of Sedimentary Basins. N D Naeser and T H McCulloh (Eds). New York: Springer-Verlag (pp. 133–140).

    Google Scholar 

  22. Hoffman J, Hower J, 1979. Clay mineral assemblages as low grade metamorphic geothermometers. Application to the thrust-faultet disturbed belt of Montana, USA. SEPM Special Publ. No. 26.

    Google Scholar 

  23. Pusch R, Madsen F, 1995. Aspects on the illitization of the Kinnekulle bentonites. Clays and Clay Minerals, Vol. 43, No. 3 (pp. 261–270).

    Article  Google Scholar 

  24. Pusch R, Karnland O, Lajudie A, Decarreau A, 1993. MX-80 exposed to high temperatures and gamma radiation. SKB Technical Report TR-93-03. SKB, Stockholm.

    Google Scholar 

  25. Pusch R, Karnland O, Hökmark H, Sandén T, Börgesson L, 1991. Final report of the Rock Sealing Project – Sealing properties and longevity of smectitic clay grouts. Stripa Project Technical Report 91-30. SKB, Stockholm.

    Google Scholar 

  26. Pacovsky J, Svoboda J, Zapletal L, 2005. Saturation development in the bentonite barrier of the Mock-up CZ geotechnical experiment. Clay in Natural and Engineered Barriers for Radioactive Waste Confinement – Part 2. Physics and Chemistry of the Earth, Vol. 32/8-14. Elsevier Publ. Co. (pp. 767–779).

    Google Scholar 

  27. Pusch R, Kasbohm J, Pacovsky J, Cechova Z, 2005. Are all smectite clays suitable as “buffers”? Clay in Natural and Engineered Barriers for Radioactive Waste Confinement – Part 1. Physics and Chemistry of the Earth, Vol. 32/1-7. Elsevier Publ. Co. (pp. 116–122).

    Google Scholar 

  28. Pusch R, Kasbohm J, Thao HM, 2007. Evolution of clay buffer under repository-like conditions. Proc. Int. Workshop on THMCB processes, Lund 2007. Applied Clay Science (In print).

    Google Scholar 

  29. Grindrod P, Takase H, 1993. Reactive chemical transport within engineered barriers. In: Proc. 4th Int. Conf. on the Chemistry and Migration Behaviour of Actinides and Fission Products in the Geosphere, Charleston, SC USA, 12-17 Dec. Oldenburg Verlag 1994 (pp. 773–779).

    Google Scholar 

  30. Linares J et al., 1989. Investigacion de bentonitas como materiales de sellado. U.E.I. Fisicoquimica y Geoquimica Mineral Estacion Experimental del Zaridin (CSIC), Granada, Spain.

    Google Scholar 

  31. Huertas F et al., 2000. Effects of cement on clay barrier performance, ECOCLAY project. Final report Contract No F14 W-CT96-0032, European Commission, Brussels.

    Google Scholar 

  32. Pusch R, 1982. Chemical interaction of clay buffer materials and concrete. Technical Report SFR 82-01. SKB, Stockholm.

    Google Scholar 

  33. Pusch R, Zwahr H, Gerber R, Schomburg J, 2003. Interaction of cement and smectite clay – theory and practce. Appl. Clay Science, Vol. 23 (pp. 203–210).

    Article  Google Scholar 

  34. Horseman, ST, Harrington JF, 1997. Study of gas migration in MX-80 buffer bentonite. Nat. Envir. Research Council, British Geol. Survey. Report WE/97/7.

    Google Scholar 

  35. Couture RA, 1985. Steam rapidly reduces the swelling capacity of bentonite. Nature, Vol. 318 (p. 50).

    Article  Google Scholar 

  36. Pusch R, Bluemling P, Johnson L, 2003. Performance of strongly compressed MX-80 pellets under repository-like conditions. Appl. Clay Science, Vol. 23 (pp. 239–244).

    Article  Google Scholar 

  37. Pedersen K, 1995. Survival of bacteria in nuclear waste buffer materials. The influence of nutrients, temperature and water activities. SKB Technical Report TR 95-27. SKB, Stockholm.

    Google Scholar 

  38. Pusch R, 1999. Mobility and survival of sulphate-reducing bacteria in compacted and fully water saturated bentonite – microstructural aspects. SKB Technical Report TR-99-30. SKB, Stockholm.

    Google Scholar 

  39. Olsen HW, 1961. Hydraulic flow through saturated clays. Dr Thesis, Civ. Eng., MIT, USA.

    Google Scholar 

  40. Pusch R, Karnland O, Hökmark H, 1990. GMM – A general microstructural model for qualitative and quantitative studies of smectite clays. SKB Technical Report TR 90-43. SKB, Stockholm.

    Google Scholar 

  41. Pusch R, Muurinen A, Lehikoinen J, Bors J, Eriksen T, 1999. Microstructural and chemical parameters of bentonite as determinants of waste isolation efficiency. Final Report EC Contract No F14 W-CT95-0012, European Commission, Brussels.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Pusch Dr .

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pusch, R. (2008). Engineered Barriers and Their Interaction with Rock. In: Geological Storage of Highly Radioactive Waste. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77333-7_4

Download citation

Publish with us

Policies and ethics