
T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 410–421, 2007.
© IFIP International Federation for Information Processing 2007

An Efficient Handoff Strategy for Mobile Computing
Checkpoint System

Chaoguang Men1,2, Zhenpeng Xu2, and Dongsheng Wang1,2

1 National Laboratory for Information Science and Technology, Tsinghua University, Beijing
100084, China

2 Research Center of High Dependability Computing Technology, Harbin Engineering
University, Harbin, Heilongjiang, 150001, P.R. China

{mencg,wds}@tsinghua.edu.cn,
{menchaoguang,xuzhenpeng}@hrbeu.edu.cn

Abstract. The Eager, Lazy and Movement-based strategies are used in mobile
computing system when handoff. They result in performance loss while moving
the whole checkpoint on fault-free or slow recovery while not moving any
checkpoint until recovery. In the paper, a compromise strategy is proposed. The
whole recovery information are broken into two parts, which one little part with
high-priority should be transferred to the new cell during handoff and another
large part with low-priority should be transferred only when the mobile host
recovers from a fault. From the view of mobile host, it seems that all recovery
information reside on the local mobile support station. The strategy guarantees
little performance losing when fault-free and quick recovery when fault occurs.
Experiments and analysis show the handoff strategy performance overcomes
others.

Keywords: mobile computing, fault tolerant, checkpoint, handoff, rollback
recovery.

1 Introduction

Checkpointing and rollback-recovery has been an attractive technique for providing
fault-tolerance in mobile computing system [1]. Due to the mobility of the hosts,
limited bandwidth, highly unreliable wireless link, mobile hosts disconnect from
network voluntarily, power restriction and limitation of storage space in mobile
devices, conventional checkpointing recovery schemes used in wired distributed
network cannot be directly applied to mobile environment [2]. When a mobile host
(MH) moves from one cell to another, Eager, Lazy and Movement-based strategies are
used, which move the whole recovery information to new mobile support station
(MSS) or not move any recovery information until a MH recovers [3]. A strategy
which moves the whole recovery information in fault-free will depress the
performance of system due to transfer useless information and others which not move
any recovery information until a fault occurs will delay the system recovers from a
fault due to recovery information can not be gotten in time. No one strategy is

 An Efficient Handoff Strategy for Mobile Computing Checkpoint System 411

excellent in every circumstance. A compromise strategy is proposed. Only a few part
of recovery information is moved to the new local cell when a MH moves, which little
useless work is done when fault-free or quick recovery can be done when a fault
occurs.

The paper is organized as follows: Section 2 introduces the system model and
definitions. Section 3 presents a checkpoint and recovery strategy with an efficient
handoff scheme for mobile computing. Section 4 gives its correctness proofs.
Section 5 compares the handoff scheme with others. Section 6 draws a conclusion.

2 Preliminaries

A mobile computing system MCS=〈 N, C〉 is composed of a set of nodes N and a set
of channels C. The set of nodes N=M∪S can be divided into two types, M={MH1,
MH2,..., MHn} is the set of MHs, which are able to move while retaining their network
connections and S={MSS1, MSS2,..., MSSm} is the set of static nodes acting as the
MSSs. The set of channels C=W∪W' can be divided into two disjoint sets, the set of
high-speed wired channels W, where W=S×S is the type through that static nodes are
connected, and the set of low bandwidth wireless channels W', where W'=S×M is the
type through that MHs are connected to a MSS. A cell is a geographical area covered
by a MSS. A MH residing in the cell of MSSp can directly communicate with MSSp
through a wireless channel. In a cell of MSSi, let CLi={MHj | MHj∈MSSi,0<j<n+1}
denotes the active nodes or sleeping nodes identified by Active_MH_Listi or
Disconnected_MH_Listi respectively, then there exists a channel 〈 MSSi, MHj〉 ∈W'
only if MHj∈CLi ⇒ MHj∉CLk, ∀k≠i, assuming that the geographical cells around
each of the MSS do not overlap. The MHs have limited battery power and hence
cannot keep communication with the MSSs for long, hence they often disconnect from
the network. Such disconnections can be voluntary without any fault or involuntary
due to abruptly running out of battery. The mobile computing system model is
described in Fig. 1.

Fig. 1. Mobile computing system model

412 C. Men, Z. Xu, and D. Wang

Distributed computations running concurrently on different MHs consist of a set of
N processes denoted by P1, P2, ..., Pn. Processes do not share a global memory or a
global physical clock, and they communicate with each other only through message
passing. For simplicity, we assume that only one process runs on each MH. So we can
use the terms ‘MH’ and process interchangeably. We assume that each of the channels
is bidirectional with reliable FIFO delivery of messages and the message transfer
delays are finite but arbitrary. Processes follow the piece-wise deterministic execution
model, and the underlying computation is asynchronous. The fault model is assumed
to be fail-stop and all faults can be detected immediately, which results in halting
failed process, initiating recovery action are considered to be transient and the same
fault would not repeat when the process restarts.

Let Rcv(i,α) denotes the αth message receiving event of a process Pi; the state
interval I(i,α) denotes the sequence of states generated between Rcv(i,α-1) and
Rcv(i,α), where α>0 and Rcv(i,0) denotes the initial event. Then, the dependency
relation of processes caused by the message communication can be defined as
follows:

Definition 1. Dependency Relation: A state interval I(i,α) is said to be dependent on
another state interval I(j,β) if one of the following conditions is satisfied and the
dependency relation is denoted by I(j,β)→I(i,α):

(i). i=j and α=β+1
(ii). For an event Rcv(i,α), the corresponding message-sending event happens in I(j,β)
(iii). For any I(k,γ), I(j,β)→I(k,γ) and I(k,γ)→I(i,α) [2].

With the pessimistic message logging scheme, an interval I(i,α+1) can be fully
recovered after a fault if the event, Rcv(i,α), has been stably logged; Otherwise, the
interval becomes lost. During the rollback-recovery of a process, the dependency
relation may cause an inconsistency problem.

Definition 2. Orphan interval: An interval on which depends any lost interval is called
an orphan state interval.

Definition 3. Consistent Recovery: The recovery from a fault F(i,f) is said to be
consistent, if and only if there is not any orphan state interval, that is, for any
I(i,α)∈L(i,f) there exists no I(j,β), such that I(i,α)→I(j,β). Where F(i,f) denotes the fth
fault of Pi and L(i,f) denotes the set of lost state intervals caused by F(i,f) [3].

The handoff and location scheme are supplied to support the mobility of MH. When a
MH leaves a cell and enters another cell, it must end its current connection by sending
a leave(r) message to its local MSS, where r is the sequence number of the last
message received from the MSS. Then the MH establishes a new connection by
sending a join(MH-id, previous MSS-id) message to the new MSS. Usually, leaving a
cell and entering another cell happens simultaneously when an MH crosses the
boundary between two cells and it is called a handoff. Each MSS maintains a list of
identifiers of MHs that are currently supported by the MSS. A MH can also disconnect
itself from the local MSS without leaving the cell by sending disconnect(r) message
when the MH goes into the sleep mode for power conservation. Later, the MH can
reconnect to any MSS by sending a reconnect(MH-id, previous MSS-id) message to

 An Efficient Handoff Strategy for Mobile Computing Checkpoint System 413

the MSS. If the MH is reconnected to a new MSS, the new MSS informs the previous
MSS of the reconnection of the MH so that the previous MSS can perform the proper
handoff procedures [4].

Handoff time is an important parameter which affects mobile system performance
besides checkpoint state-saving cost and recovery cost [5]. There three categories
handoff strategy named Eager, Lazy and Movement-based. Eager mobility handoff
strategy, which also named Pessimistic, always keeps the logging and checkpoint
information in the local MSS in which the MH currently resides [5]. Thus, when the
MH moves from one MSS to another during the execution of a mobile application, all
the checkpoint and logging information must be moved to the current MSS as well.
The advantage of this approach is fast failure recovery. But the MSSs visited by the
MH have to experience high fault-free cost to transfer the recovery information and
access the stable storage. Under the Lazy strategy, on the other hand, the checkpoint
and logging information do not be moved as the MH moves [5]. Rather, a forwarding
pointer is established from the local MSS to the last MSS so that when a failure occurs,
the checkpoint and logging information of the mobile application can be recovered
from all the MSSs on the forwarding chain by following the links. The advantage of
this approach is little fault-free cost, but the recovery cost can be too high, if the
recovery information is dispersed over a wide range of cells. The tradeoff schemes are
Movement-based handoff strategies, which are Distance-based and Frequency-based
[4]. Under the Distance-based scheme, which focuses on the distance between MHi
and the MSS carrying latest checkpoint of MHi, the checkpoint and message logs need
to be moved into a MSS near MHi, only when the moving distance of MHi from a MSS
carrying the latest checkpoint exceeds a certain threshold. On the other hand, the
Frequency-based scheme concerns the number of handoffs, since that number
indicates the number of sites carrying the message logs and the frequency of
communication for collecting the message logs in case of recovery. Hence, in this
scheme, MHi keeps counting the number of handoff and transfers the checkpoint and
logs if the number exceeds a certain value. Of course, in both of the above schemes,
the recovery cost and the fault-free operation cost is adjustable using the threshold
values. Checkpoint and logs are moved to new local MSS when fault-free, the
Movement-based schemes have the disadvantage of Eager. Checkpoint and logs are
not moved to new local MSS until recovery, the Movement-based schemes have the
disadvantage of Lazy. Obviously, how effective these strategies would be depends on
various system parameters, including the checkpoint rate, logging message arrival
rate, user mobility rate, failure rate, and bandwidth. No one scheme is always better
than others under all situations [6].

3 The Recovery Scheme

The proposed recovery scheme is based on independent checkpointing, pessimistic
message logging and asynchronous rollback-recovery. An efficient handoff scheme is
proposed. Different from Eager, Lazy and Movement-based schemes which move the
whole recovery information or do not move any recovery information until recovery,
in our strategy, the whole recovery information which include checkpoint and logs are
broken into two parts. One part includes only a little part of recovery information with

414 C. Men, Z. Xu, and D. Wang

high-priority. The other part includes the rest of the recovery information with low-
priority. The high-priority part of recovery information is treated as that in Eager
scheme and the low-priority part of recovery information is treated as that in Lazy
scheme. Appropriate partitions high-priority and low-priority recovery information
can satisfy both quick recovery and fault-free cost. When recovering from a fault, the
high-priority part can be transferred instantly to the recovering MH, the low-priority
part can be collected by the local MSS simultaneously from other MSSs and then be
transferred to the recovering MH successively. From the view of the recovering MH,
it seems that all recovery information always resides on the local MSS.

3.1 The Data Structure and Denotations

Let CKi,α denotes the αth checkpoint of MHi; CK_infoi is a record which contains six
variables, CK_sn, CK_loc, CK_low, Logm_seq, Send_max, and Log_queue. CK_sn
denotes the sequence number of the latest checkpoint and the CK_loc denotes the
identifier of the MSS carrying the high-priority of the latest checkpoint; CK_low
denotes the identifier of MSS carrying the low-priority of the latest checkpoint;
Logm_seq denotes the sequence number of the first message logged after the latest
checkpoint; Send_max denotes the maximum sequence number of message sent
successfully by MHi to other MHs since the latest checkpoint; Log_queue is a list
established for the local MSS to save the identifiers of MSSs which have the logs
saved after the latest checkpoint; Msgi,α denotes the αth message sent by MHi;
Rcv_seqi is an integer variable, which denotes the maximum sequence number of
messages that have been received and consumed in MHi. Logmi,α denotes the αth
message log.

3.2 The Checkpointing and Logging

Each MHi takes an initial checkpoint on initialization and sets the corresponding
checkpoint sequence number CK_infoi.CK_sn to 0. Every MH takes checkpoint
periodically. When MHi finishes a new checkpoint, the information about this
checkpoint is recorded in CK_infoi. The CK_infoi and the new checkpoint will be sent
to its local MSSp.

Each MSS logs the received messages before delivering to MHs in its cell. As a
message heading for MHi should be routed through the local MSSp, using the local
MSSp to log the message into its storage space will not incur extra overhead. MSSp
also logs the messages of the mobility of MHs, including the messages of MHs to join
in, leave from, disconnect from and reconnect to the cell. Upon a user input of the
MH, a copy of it is firstly forwarded to the local MSSp for logging in case of its lost.
On receipt of the acknowledgment from MSSp, the MH starts to process the input
event. When MHi leaves or disconnects from MSSq, it sends Disconnect(i) message to
the local MSSq for logging. MSSq logs the event on the receipt of it and deals with it.
When MHi joins in a new cell of MSS, says MSSr, it sends Join(MSSq) to MSSr. And
MSSr will add MSSp into the CK_infoi.Log_queue if MSSp is not in the
CK_infoi.Log_queue.

The checkpointing and message logging algorithm is described in Fig. 2.

 An Efficient Handoff Strategy for Mobile Computing Checkpoint System 415

Actions taken when checkpointing Timer of MHi Expires:
CK (i, ++CK_infoi.CK_sn);
/*saves the state of MHi as a new checkpoint of MHi.*/
CK_infoi.Logm_seq=Rcv_seqi+1;

/*assigns the sequence number of the first message which will be logged after
the new checkpoint.*/
Send (CKi,α , CK_infoi, MSSp) ;
/* Sends the new checkpoint and its information to its local MSS. */

Actions taken when MSSp receives CKi,α and CK_infoi from MHi:

Store (CKi,α , CK_infoi);
/* Saves the new checkpoint and its information in local MSSp. */
CK_infoi.CK_loc= MSSp;
/* identifies the MSS carrying the high-priority of latest checkpoint.*/
CK_ low = MSSp ;
/* identifies the MSS carrying the low-priority of latest checkpoint.*/

Actions taken when MHi receives a message Msgk,α from local MSSp:

Consume Msgk,α;
/* MHi deals with the message.*/
Rcv_seqi ++;
/* MHi adds the sequence number of message.*/

Actions taken when MSSp receives a message Msgi,α from MHi:
Log Msgi,α ;
Logmi,α++;
/* saves the new message into log-space and adds the message number. */
If MSSp∉CK_infoi.Log_queue

Then CK_infoi.Log_queue = CK_infoi.Log_queueU {MSSp};
/*add MSSp to the CK_infoi.Log_queue. */
Transfer Msgi,α;
/* forwards the computational message to goal MHi.*/
If (Msgi,α∈{join, leave, disconnect, reconnect})
 Actions ;

/* takes related actions according to the received messages.*/

Fig. 2. Checkpointing and message logging algorithm

3.3 The Handoff Strategy

The recovery information including checkpoint and massage logs are broken into two
parts that one with high-priority and the other with low-priority. The main idea is that
low-priority checkpoint information can be sent to the local MSS of recovering MH
through high speed wired network at the same time as the high-priority recovery
information is being sent to recovering MH through low speed wireless network.

The amount of high-priority part and low-priority part of recovery information
depend on the speeds of wired and wireless networks. Set LTmax and WTmin denote the
maximum communication speed of wireless network and minimum communication
speed of wired network respectively. Set VP0 denotes the amount of high-priority

416 C. Men, Z. Xu, and D. Wang

recovery information. For simplicity, we assume that the amount transmitted is the
integral multiple of packet size.

When a MHi recovers from a fault, the VP0 will be sent to MHi from the local MSSp
instantly. The transmission time at least is:

max

0

1 LT

VP
t = . (1)

The amount of low-priority recovery information collected from other MSSs
simultaneously in time t1 at least is:

 min11 *WTtVP =
max

min0

LT

WTVP ×= . (2)

Because the speed of wired network is faster than the speed of wireless, so
VP1>VP0, that is more information can be collected through wired network when an
amount of information is sent through wireless network. In turn, more recovery
information, VP2, can be collected through wired network when VP1 is sent through
the wireless network. The amount of recovery information transferred to MSSp from
other MSSs is:

L+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎢

⎣

⎡
×

2

max

min

max

min
0 LT

WT

LT

WT
VP

⎥
⎥
⎦

⎤
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

− nn

LT

WT

LT

WT

max

min

1

max

min . (3)

The effective handoff scheme is described in Fig. 3.

Actions taken when MSSp receives join (MSSq) request:
Send (VP0_retrieve, MSSq)

/*sends request message to MSSq get high-priority part of CKi,α */
Actions taken when MSSq receives VP0_retrieve from the new local MSSp:

Send (VP0 , MSSp)
/*sends high-priority part of recovery information to MSSp. */

Actions taken when MSSp receives VP0:
CK_loc=MSSp;
Store CK_infoi and high-priority part of CKi,α;

/* identifies the MSS carrying the high-priority of latest checkpoint and saves
the high-priority of recovery information.*/

Fig. 3. An effective handoff scheme

3.4 Independent Recovery

When recovering from a fault, MHi sends a recovery request, RollbackReq(i), to its
local MSSp. If CK_infoi is saved in the local MSSp, the high-priority part of recovery
information is sent to MHi instantly. To collect the rest of checkpoint and logs, the
local MSSp sends Chkpt_retrieve(CK_infoi.CK_sn) and Log_retrieve(CK_infoi.Logm_
seq) request to other MSSs according to CK_low and CK_infoi.Log_queue. After
receiving the request, the other MSSs reply with the low-priority checkpoint part and

 An Efficient Handoff Strategy for Mobile Computing Checkpoint System 417

the logs whose sequence number is not less than CK_infoi.Logm_seq. After transfer-
rring the high-priority part of recovery information to the recovering MHi, the local
MSSp sends the low-priority checkpoint part to the recovering MHi successively. After
receiving the whole checkpoint, MHi reloads the checkpoint to restore the system, and
then resumes and replays the logs. During recovering, new message sent to MHi is
saved in its local MSSp, and will be forwarded to MHi, in turn, after recovering. The
message that sequence number less than CK_infoi.Logm_seq is discarded to avoid
repeat messages.

If there is not CK_infoi in the local MSSp, it means that a fault has occurred in other
cell and then MHi enters this cell in where it submits the recovery request. MSSp
broadcasts recovering request to all MSSs. The previous local MSSq sends the high-
priority part of recovery information to MSSp. MSSp executes the recovering process.
The asynchronous recovery algorithm is described in Fig. 4.

Actions taken when MHi occurs a fault:
Send (RollbackReq(i), MSSp);
/*Sends recovery request to the local MSSp.*/

Actions taken when MSSp receives RollbackReq(i) from MHi:
If (MHi∈(Active_MH_Listp or Disconnected_MH_Listp))
Send (VP0, MHi);
/*if MSSp holds latest checkpoint with high-priority, sends it to MHi. */
Send (Chkpt_retrieve (CK_infoi.CK_sn), CK_low);
/* sends retrieval message to CK_low to get the remnant part of checkpoint.*/
Send (Log_retrieve(CK_infoi.Logm_seq), CK_infoi.Log_queue);
/* sends request to MSSr in the list of Cpinfoi.Log_queue to get message logs.*/
Else
 Broadcast info_retrieve(i);
/* If the local MSSp don’t hold the latest CK_infoi, broadcasts the recovery

request.*/
Actions taken when MSSk receives Broadcast info_retrieve(i) from MSSp:

Send (high-priority of CKi,α, CK_infoi , MSSp);
 /* sends the high-priority part of recovery information to local MSSp.*/

Actions taken when MSSq receives Chkpt_retrieve(CK_sn) from MSSp:
Send (the remnant of CKi,α, MSSp);
 /*sends the remnant of checkpoint to local MSSp.*/

Actions taken when MSSq receives Log_retrieve (Logm_seq) from MSSp:
If (∃Logmi,α in MSSq log space and α≥Logm_seq)
Send (Logmi,α, MSSp);
/*sends related message logs to local MSSp.*/

Actions taken when MHi receives the full CKi,α from MSSp:
Restore CKi,α;
 /*restores the full checkpoint.*/
Resume action;
/*starts the computation process of recovery.*/

Fig. 4. The asynchronous recovery algorithm

418 C. Men, Z. Xu, and D. Wang

3.5 Garbage Collection

MHi takes new checkpoint CKi,α and sends the checkpoint and CK_infoi to MSSp.
MSSp sends a message which a new checkpoint has been taken to all MSSs which will
delete old checkpoint CKi,α-1 and relative information that denoted by old
CK_infoi.CK_loc, CK_infoi.CK_low, CK_infoi.Log_queue. Every MSS will release the
space held by checkpoint CKi,α-1 and implement garbage collection.

4 Correctness of the Algorithm

Theorem 1. The asynchronous recovery of MHi is a consistent recovery.

Proof: Recoverable: the latest checkpoint and the messages with the sequence number
larger than the CK_infoi.logm_seq were saved safely due to the reliable
communication, the reliable MSSs and the pessimistic message logging. Therefore, on
the recovery of MHi, every message logs and the latest checkpoint can be retrieved.
The messages can be replayed according to the sequence number after restoring the
latest checkpoint. In other words, MHi can reconstruct one possible sequence of state
intervals as those constructed before the fault due to processes following the piece-
wise deterministic execution model. So MHi is recoverable on fault in the strategy.

Consistent recovery: The lost events which incurs L(i,f) can only be the messages or
user inputs that had not been sent successfully to the local MSS before a fault. This
implies the corresponding messages could not be transferred to their destinations.
According to the definition 1, the lost events can not incur new dependency relations
between MHs. Therefore, for any I(i,α)∈L(i,f) there exists no I(j,β), such that I(i,α)→
I(j,β). The independent recovery is a consistent recovery as the recovery strategy
satisfies the definition 3. □

5 Performance Study

The model and parameters in [6] are adopted. MHs communicate with MSSs through
802.11a wireless network adapter. MH moves from one cell to another follows a
Poisson process with rate σ=0.01. The message sending rate of a MH follows a
Poisson process with rate λ=0.1. Each MH takes a checkpoint with a fixed interval
Tc=1000s, the failure rate of each MH follows an exponential distribution with rate
δ=0.0001. Increment strategy is adopted for saving a checkpoint and its size is 1MB.
The size of a logs entry is 50B. The ratio of wireless network speed to wired network
speed is r=0.1. The time required to load a log entry through a wireless channel is
T1=0.016s, and the time required to load a checkpoint through a wireless channel is
T3=0.32s. The time required to execute a log entry is T2=0.0008s. We assume that
when a MH moves 5 times, its checkpoint should be moved to the new local MSS in
Frequency-based strategy and when a MH moves 10 times, its checkpoint should be
moved to the new local MSS in Distance-based strategy.

Fig. 5 shows the amounts of recovery information needed to be transmitted in every
recovery strategies. The y-axis indicates the overhead of message transfer incurred by
different strategies for MH’s recovery, while the x-axis denotes the time that a fault

 An Efficient Handoff Strategy for Mobile Computing Checkpoint System 419

occurs on the MH. The overhead of recovery information management under our
virtual strategy is always less than those under Eager, Frequency-based and Distance-
based strategy, and only a little large than that under Lazy strategy, because our
compromise strategy only moves little, not the whole, latest checkpoint to the local
MSS when a MH moves from one cell to another.

Fig. 6 shows the amounts of recovery information needed be transmitted by every
strategy under different message sending rate after the system has run 500 seconds.
The overhead of every handoff strategy becomes increment with the increment of
message sending rateλ. The overhead of our handoff strategy almost equals to that
under Lazy and far less than the other’s.

Let N(t) denotes the number of logs saved until MH faults. ff(t) denotes the
probability when a fault occurs in time t. Under our and Eager strategies, the
recovering probability of time T is [6]:

[] dttfTTTTtNTF
M

TcM

MTc

f∑ ∫
+∞

=

+

≤++=
0

)1(

3211)(})(Pr{)(. (4)

M denotes the checkpoint number experienced by a MH in time t, T1, T2 and T3 denote
the mean time of loading a log entry through wireless network, executing a log entry
and loading whole checkpoint through wireless network respectively. N(t) is a
Poisson process with rate λ=0.1, and ff(t) is an exponential distribution with rate
δ=0.0001, we get:

Fig. 5. The amounts of recovery inform-
ation need transmitted

Fig. 6. The amounts of recovery information
need transmitted with different rate

'
!

)'(
)('

0 0 0

'

1

21

3

dtee
n

te
TF MTct

M

Tc TT

TT

n

nt
δδ

λ

δλ −−
∞+

=

⎥
⎦

⎥
⎢
⎣

⎢
+
−

=

−

••= ∑ ∫ ∑

Tc

Tc TT

TT

n

t
nt

e

dte
n

te

δ

δ
λ

δλ

−

⎥
⎦

⎥
⎢
⎣

⎢
+
−

=

−
−

−

•
=
∫ ∑

1

!
)(

0 0

21

3

. (5)

420 C. Men, Z. Xu, and D. Wang

Under Lazy strategy, the recovering probability of time T is:

∑ ∫
+∞

=

+

==≤=
0

)1(

2 },|Pr{)(
M

TcM

MTc

bfr kkttTTTF

dttfttkk ffb)(}|Pr{ ==• . (6)

Replacement N(t) and ff(t) by their value:

∑ ∫∑ ∑
∞+

=

∞+

=

⎥
⎦

⎥
⎢
⎣

⎢
++
−−−

=

−

=
0 0 0 0

'

2

211

333

!
)'(

)(
M

Tc

k

TTrT

rkTrTTT

n

nt

n

te
TF

λλ
'

!
'

)'('

dtee
k

e MTct
tt k

δδ
σσ

δ −−
−

•••

Tc

Tc

k

TTrT

rkTrTTT

n

t
ttnt

e

dte
k

e

n

te
k

δ

δ
σσλ

δλ

−

∞+

=

⎥
⎦

⎥
⎢
⎣

⎢
++
−−−

=

−
−−

−

••
=
∫∑ ∑

1

!!
)(

0 0 0

)(211

333

 . (7)

Fig. 7 shows the probabilities of recovering time under various handoff strategies.
Our strategy which only has a little overhead large than that under Eager is better than
that under Lazy and has the same recovery probability as Eager has. Fig. 8 shows the
executing overhead under our asynchronous recovery strategy and coordinated
recovery strategy which the number of MHs is 100 and only 10 MHs need recovery
from a fault. As shown in the figure, our strategy is better than coordinated strategy,
and is more effective.

Fig. 7. The fault recovery probability Fig. 8. The actual execution time of the mob-
ile applications

6 Conclusion

The handoff strategy taken when a MH moves from one cell to another will affect the
executing efficiency and recovering time of checkpoint algorithm. Different from
other schemes, in the strategy proposed in the paper, the recovery information is

 An Efficient Handoff Strategy for Mobile Computing Checkpoint System 421

broken into two parts, which the first part must be transferred instantly to the new cell
when a handoff happens and the second part can be transferred simultaneously to the
local MSS through static network as the first part is transferred to the recovering MH.
The partition principle is that the first part as little as possible and the second part as
large as possible under guaranteeing recovering information to be transmitted to
recovering MH successively. From the view of recovering MH, it seems that all
recovery information resides on the local MSS all the time. This strategy considers
both minimum executing time on fault-free and quickly recovering from a fault.
Experiments and analysis show our strategy is better than others.

References

1. Elnozahy, E.N., Alvisi, L., Wang, Y.M., Johnson, D.B.: A Survey of Rollback-Recovery
Protocols in Message-Passing Systems. ACM Computing Surveys 34(3), 375–408 (2002)

2. Ching, E.Y., Phipatanasuphorn, V.: A Survey of Checkpoint-Recovery Techniques in
Wireless Networks (2002), http://www.cae.wisc.edu/ ece753/papers/Paper_9.pdf

3. Park, T., Woo, N., Yeom, H.Y.: An Efficient Optimistic Message Logging Scheme for
Recoverable Mobile Computing Systems. IEEE Transactions on Mobile Computing 1(4),
265–277 (2002)

4. Park, T., Woo, N., Yeom, H.Y.: An Efficient Recovery Scheme for Mobile Computing
Environments. In: The 8th International Conference on Parallel and Distributed Systems
(ICPADS), Kyongju City, Korea, pp. 53–60 (2001)

5. Pradhan, D.K., Krishna, P., Vaiday, N.H.: Recoverable Mobile Environment: Design and
Trade-off Analysis. In: Proc. of the 26th Int’l Symp. on Fault Tolerant Computing System,
Sendai, Japan, pp. 16–25 (1996)

6. Chen, I.-R., Gu, B., George, S.E., Cheng, S.-T.: On failure recoverability of client-server
applications in mobile wireless environments. IEEE Transactions on Reliability 54(1),
115–122 (2005)

	An Efficient Handoff Strategy for Mobile Computing Checkpoint System
	Introduction
	Preliminaries
	The Recovery Scheme
	The Data Structure and Denotations
	The Checkpointing and Logging
	The Handoff Strategy
	Independent Recovery
	Garbage Collection

	Correctness of the Algorithm
	Performance Study
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

