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Abstract. RF-powered smart cards are widely used in different appli-
cation areas today. The complexity and functionality of smart cards is
growing continuously. This results in a higher power consumption. The
power consumed is heavily depending on the software executed on the
system. The power profile, especially the power peaks, of an executed
application influence the system stability. If the power consumed by such
a device exceeds the power provided by the RF-field a reset can be trig-
gered by the power control unit or otherwise the chip may stay in an
unpredictable state. Flattening the power profile can thus increase the
stability of a system.

We present an optimization system which intends to eliminate critical
peaks after the analysis of the power profile of an executed application.
In an iterative compile process an optimal tradeoff between power and
performance has to be found. This is achieved by selecting or deselecting
different optimization passes on the intermediate language level of the
compiler.

Keywords: Iterative compiling - Software power optimization - Peak
reduction - Smart card systems - Power profile analysis.

1 Introduction

The complexity and functionality of smart cards is growing continuously. This
results in a higher power consumption of such devices. Smart cards are often
supplied by a radio frequency (RF) field which provides a strictly limited amount
of power. If the power consumed by such a device exceeds this limit, a reset
can be triggered by the power control unit or otherwise the chip may stay in
an unpredictable state [1]. Furthermore the transmission from RF-system to a
reader is often done via amplitude shift keying. Power peaks, which result in an
unwanted modulation of the field, can potentially disturb the communication.
Therefore the smart card has to be optimized for low power with the constraint
to avoid peaks in power consumption. Smart cards are often used to process
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and store confidential information. Simple power analysis (SPA) and differential
power analysis (DPA) are attacks based on the analysis of the power consumption
profile of a smart card [2]. Eliminating power peaks and thus flattening the power
consumption profile can hinder these attacks.

Fig. 1. Peak elimination framework - Overview

To address these problems different solutions to reduce the power consumption
at different system levels have been proposed. As power peaks are mainly caused
by determined instruction sequences, in this work we focus on the software level.
We present a new concept, where the optimization is done in an iterative compile
process. As depicted in Fig. 1, the source code is first compiled and then executed
on a cycle accurate power simulator. The simulator delivers a cycle accurate
power profile of the executed code. The peak analysis unit is able to identify
critical peaks from the power profile and informs the peak elimination unit of
the corresponding code segments. The compiler tries to eliminate these critical
power peaks by selecting or deselecting the different compiler passes for these
code segments. This whole cycle is repeated in an iterative manner to find the
optimal trade-off between performance and system stability.

The remainder of this paper is organized as follows. Section 2 surveys re-
lated work for software power optimization and iterative compiling. In section 3
the classification of peaks is described. Section 4 depicts the peak elimination
framework. Results are presented in section 5. The conclusions are summarized
in section 6.

2 Related Work

Tiwari et al. [3,4] outlined the importance of energy optimization at the soft-
ware level in embedded systems already in the nineties. They presented different
optimization techniques for reducing the software energy consumption, such as
the use of a code-generator-generator and reordering the instructions. All these
techniques are based on instruction level power analysis. The underlying energy
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model defines base costs (BC) to characterize a single instruction. The circuit
state overhead (CSO) describes circuit switching activity between two consecu-
tive instructions.

On a higher level of compilation a promising technique for the reduction
of power peaks is iterative compiling. Iterative Compiling was first presented
by Knijnenburg et al. [5,6]. They propose to generate many variants of source
programs and to select the best one by profiling these variants. The main problem
is to find the best solution in the extremely large search space. They propose
to randomly evaluate a small percentage of the transformation space. Fursin
et al. [7] demonstrated hill-climbing and random iterative search techniques to
optimize large applications on a loop-level.

Cooper et al. [8,9,10] and later Kulkami et al. [11] demonstrated that find-
ing optimal optimization order can also considerably improve code quality and
performance.

Fursin and Cohen [12] presented an Interactive Compilation Interface (ICI).
The main goals are to control only the decision process at global and local levels
and to avoid revealing all intermediate compiler representations to allow further
transparent compiler evolution and to treat current optimization heuristic as a
black-box and progressively adapt it to a given program and given architecture.
The interface supports different search strategies like exhaustive search, random
search, hill-climbing search and machine learning. Although the interface should
also support tuning programs for best power consumption, the authors have not
shown this in any experiments.

While performance optimization is the main objective in research about iter-
ative compiling, Gheorghita et al. use iterative compilation to reduce energy
consumption [13]. The authors use iterative compilation in order to find the
best compiled code for energy and energy-delay product. However the work only
concentrates on the loop transformation passes.

In this work we propose to use iterative compiling for the power peak reduction
on all compiler passes influencing the power behavior of an application.

3 Peak Classification

Figure 2 (a) depicts a peak, which is critical for the system. The peak causes
the voltage to drop under the threshold, under which the proper functionality
of the processor can not anymore be guaranteed. In the depicted example this
threshold is 1.6 V. Whether a peak is critical for the system depends on the
shape of the peak himself and on the energy storage capacitor of the system.

Furthermore not only single peaks are critical for the system, but also se-
quences of peaks. Figure 2 (b) shows a sequence of two peaks. While neither the
first peak nor the second one would be critical for the system if appearing alone,
the sequence of the two is critical because the supply voltage has not enough
time to recover.

Peaks can also be classified according to their origin. Peaks can be produced
from both, hardware and software. Software-peaks arise from the execution of
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Fig. 2. Critical peaks for system stability: (a) single peak; (b) sequence of peaks

power intensive code segments. Hardware-peaks result for example from the us-
age of peripherals. Furthermore critical peaks can also arise from a combination
of hardware and software-peaks.

Table 1. Classes of peaks and counter measurements

Single peak Sequence of peaks
Software-peak - Compiler optimization - Compiler optimization

- Insertion of nonfunctional code - Insertion of nonfunctional code
Hardware-peak - No elimination possible - Scheduling of peripheral

activity
Software/Hardware- - Scheduling of peripheral

activity
peak - Compiler optimization

- Insertion of nonfunctional code

Table 1 summarizes the different classes of peaks and depicts possible counter
measurements. Single or sequences of software-peaks may be eliminated by the
insertion of nonfunctional code. Nonfunctional Code should always be selected
in such a way, that circuit state overhead costs are minimized, e.g. an ADD A,0
should be selected if the last instruction executed was an ADD. In the case of
single peaks, this lowers the power level over the time and hinders the production
of a critical peaks. In the case of sequences of peaks, the nonfunctional code in
between two software peaks enables the recovery of the energy storage capacitor.
Single hardware-peaks can not be eliminated from the software engineer’s point
of view. Sequences of hardware-peaks can be avoided by scheduling the periph-
eral activizy in such a manner that there is enough time for the energy storage
capacitor to recover. The hardware/software-peaks allow a combination of the
presented counter measurements. On software level the compiler optimization is
also a good strategy to prevent critical peaks. This work concentrates on this
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optimization and presents a corresponding framework in the next section. In a
later step the framework will also support the other methods presented for peak
elimination.

4 Peak Elimination Framework

The whole framework is depicted in Fig. 3. The source code of an application
is compiled to target code. As compiler the GNU Compiler Collection (GCC) is
used. The target architecture is a MIPS32 4KSc processor. The target code is
then executed via a debugger on an cycle accurate instruction set power simula-
tor, which delivers the power profile of the executed code. A peak analysis unit
detects all critical peaks and generates a peak report. The peak elimination unit
decides based on the peak report the level of optimization for each function of
the application.

Fig. 3. Peak elimination framework

The following sections describe first the power analysis of different compiler
passes and then the peak elimination framework in more detail.

4.1 Power Analysis

First the impact on the power consumption of the different optimization passes
of the compiler has been analyzed. For this purpose different benchmarks with
different optimization levels have been compiled by deselecting passes with the
corresponding compiler flags. The resulting executables have been simulated on
the power simulator.
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Table 2 depicts the results for some passes of the benchmark bubblesort. The
bold values are always referenced to the not optimized code (O0). The other
values are referenced to the corresponding O-level, e.g. level O1 without the flag
-tree-ch executes 19.5% slower then level O1 with -tree-ch.

Table 2. Analysis of bubblesort

Gain [%]
Pass Cycles Energy Std-dev Mean Power
cse-skip-blocks -77.59 -76.81 -23.65 3.46
delayed-branch -4.11 -3.80 1.78 0.32
gcse -79.58 -78.93 -23.35 3.21
no-delayed-branch -75.51 -75.13 -15.20 1.57
O1 -79.54 -78.90 -23.32 3.15
O1 no-loop-optimize 0.37 0.33 0.15 -0.04
O1 no-tree-copy-rename 19.11 17.87 7.69 -1.04
O1 no-tree-ch 19.50 19.41 4.56 -0.07
O1 no-tree-dominator-opts 9.56 8.18 -0.74 -1.26
O1 schedule-insn -0.19 -0.09 -0.22 0.09
O1 schedule-insn2 -0.19 -0.09 -0.52 0.10
O2 -79.58 -78.14 -22.80 7.06
O2 no-gcse 0.00 0.00 -0.02 0.00
O2 no-cse-skip-blocks -0.01 -3.57 -1.17 -3.56
O2 no-schedule-insns2 0.00 0.00 0.31 0.00
Os -75.59 -74.00 -15.60 6.53

The results show clearly, that the total energy consumed is heavily depend-
ing on the execution time. Thus optimizations of the performance usually also
influence the total energy consumption in a positive way. While the total energy
consumption decreases, the mean power typically increases. It can be deduced,
that the power level is higher and thus resulting peaks are more critical for the
system. This fact is also depicted in Fig. 4. It clearly shows, that the power level
increases with the level of optimization.

The lower standard deviation is possibly caused by the higher mean power and
not from peak reduction. Results of other benchmarks show that a certain pass
can influence the power and energy consumption in different manners, depending
on the application. That is why it is not possible to make an optimal pass
selection a priori.

Therefore we propose the following strategy: a peak detection system identifies
critical parts of the code. The compiler then tries to modify these parts of the
code. This can be achieved by selecting or deselecting different compiler passes
on a basic block or function level in an iterative process. The resulting code is a
trade-off between performance and system stability.
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Fig. 4. Power profile segment of bubblesort with different optimization levels

4.2 Peak Elimination

Following the proposed strategy we have implemented a peak elimination frame-
work. A preliminary compile cycle is necessary to get a first power profile. The
power profile is produced from an instruction set simulator, which was enhanced
by an energy model. The energy model developed is a flexible and accurate com-
bination of an instruction-level energy model and a data dependent model based
on Tiwari et al. [3] and was presented in [14]. The first compilation is done with
the highest optimization level. The peak analysis unit delivers all code segments
which produce a critical peak. At the moment we use the mean power windowed
over a certain amount of cycles for this purpose. In a next step a model of the
RF-interface, which can calculate the voltage level from a given current profile,
will be integrated. As the pass manager of GCC works on a function level, in a
first approach the framework works on this level as well.

The peak elimination unit deselects the highest pass of the compilation for
all functions with critical peaks. An interface to the GCC pass manager, which
allows an easy selection of passes, has been implemented for this purpose . We use
an external file to communicate with the compiler. The file has an entry for each
function of the application with the corresponding optimization level. During the
compilation process, the pass manager reads from this file the passes to execute
for every function. After each compile cycle the resulting power profile is analyzed
again and compared to the previous profile. If the peak size has increased, the
deselected pass is selected again. Otherwise, if the peak has decreased but is still
to high, the next pass is deselected. The main steps of the algorithm are the
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following. MaxPower stands for the maximum of the windowed mean power of
each function:

1. Compile with highest optimization level.
2. (While the MaxPower of any function > threshold) and (the lowest opti-

mization level is not reached):
(a) For all function with MaxPower > threshold:

i. Deselect highest pass.
(b) Recompile application.
(c) If the new MaxPower > the old MaxPower:

i. Select pass again.

This whole loop is repeated either until there is no peak left or there is no pass
remaining to be deselected. In the last case, the system reports that there are
still critical peaks in the code, which can not be eliminated from the framework.

5 Experimental Results

For first experiments we have defined a threshold for the mean value over each
segment of a defined amount of cycles of the power profile. The values for thresh-
old and amount of cycles allow easily to define critical peaks, which have to be
eliminated.

Table 3 shows the results for selected optimization levels of the benchmark
bubblesort. Column three of the table shows the highest mean value of the cor-
responding function over all cycle windows in per cent of the threshold.

While in bubblesort O0 all functions are below the threshold, in bubblesort
O1 the function sort and init produce a critical peak. In bubblesort O1 no-
tree-dominator-opts the function sort is again under the threshold, but init still

Table 3. Results of bubblesort for different optimization levels on function level

function Cycles Max. Mean Cycles Max. Mean
Power [%] Power [%]

bubblesort O0 bubblesort O1
init 2166 94.36 330 103.97
sort 355290 96.47 52193 102.94
check 108 90.10 37 97.29
main 64 87.97 28 95.81
all 357628 96.47 52782 103.97

bubblesort O1 bubblesort peak optimized
no-tree-dominator-opts

init 421 102.84 734 94.36
sort 56280 99.14 56280 99.14
check 8 82.39 17 97.29
main 42 91.60 45 95.81
all 56751 102.24 57076 99.14
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Fig. 5. Power profile with O0, O1 and the resulting code of the peak elimination
framework for bubblesort

Fig. 6. Power profile with O0, O2 and the resulting code of the peak elimination
framework for quicksort
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remains above. The optimized configuration is thus composed of init with O0,
sort with O1 no-tree-dominator-opts and main and check with O1. The peak
optimized code was obtained after 13 compile cycles. The power profile of the
peak optimized code is depicted in Fig.5. The whole power profile is below
the threshold. As a tradeoff we loss 1.2% of the performace compared to the
O1 -optimized code, but still we only need 16% of the cycles compared to the
O0 -level.

For the benchmark quicksort the power profile is depicted in Fig.6. The first
marked peak is not critical for the system caused by his shortness and does
not have to be eliminated. The second marked region in the O2-profile contains
several longer peaks, which are critical for the system. It was possible to reduce
these peaks by lowering the optimization level of the corresponding functions.
In this case we lose 3.9% of the performace compared to the O2 -optimized code,
but still we only need 47% of the cycles compared to the O0 -level.

6 Conclusion

The elimination of power peaks in the power profile of smart cards represents
an important aspect for better system stability. In this paper we presented a
new approach to eliminate power peaks of the power profile of an application
executed on an embedded processor. The results have shown that the compiler
can be used to eliminate critical peaks. Iterative compiling can be used to find
the optimal tradeoff between performance and system stability. To also allow for
the elimination of hardware peaks, in a next step the framework will be enhanced
by further peak elimination methods like presented in section 3.
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