Skip to main content

Nephrogenic Diabetes Insipidus

  • Reference work entry
Pediatric Nephrology

Abstract

First familial cases with diabetes insipidus were described by McIlraith in 1892, however, he did not distinguish between renal and neurohormonal forms of the disorder (1). The renal type of diabetes insipidus was appreciated as a separate entity more than 50 years ago, when it was described independently by two investigators: Forssman (2) in Sweden and Waring et al. (3) in the United States. In 1947, Williams and Henry (4) noticed that injection of antidiuretic hormone (ADH) in doses sufficient to induce systemic side effects could not correct the renal concentrating defect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 369.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McIlraith CH. Notes on some cases of diabetes insipidus with marked family and hereditary tendencies. Lancet 1892;ii:767–768.

    Google Scholar 

  2. Forssman H. On hereditary diabetes insipidus with special regard to a sex-linked form. Acta Med Scand 1945;153:3–196.

    Google Scholar 

  3. Waring AJ, Kajdi L, Tappan V. A congenital defect of water metabolism. Am J Dis Child 1945;69:323–324.

    Google Scholar 

  4. Williams RH, Henry C. Nephrogenic diabetes insipidus: transmitted by females and appearing during infancy in males. Ann Intern Med 1947;27:84–95.

    PubMed  CAS  Google Scholar 

  5. Kaplan SA. Nephrogenic diabetes insipidus. In Pediatric Nephrology. Holliday MA, Barratt TM, Vernier RL (eds.). Baltimore, MD, Williams & Wilkins, 1987, pp. 623–625.

    Google Scholar 

  6. van Lieburg AF, Knoers NVAM, Monnens LAH. Clinical presentation and follow-up of thirty patients with congenital nephrogenic diabetes insipidus. J Am Soc Nephrol 1999;10:1958–1964.

    PubMed  CAS  Google Scholar 

  7. Lejarraga H, Caletti MG, Caino S et al. Long-term growth of children with nephrogenic diabetes insipidus. Pediatr Nephrol 2008;23: 2007–2012.

    PubMed  Google Scholar 

  8. Hillman DA, Neyzi O, Porter P et al. Renal (vasopressin-resistant) diabetes insipidus: definition of the effects of homeostatic limitation in capacity to conserve water on the physical, intellectual, and emotional development of a child. Pediatrics 1958;21:430–435.

    PubMed  CAS  Google Scholar 

  9. Vest M, Talbot NB, Crawford JD. Hypocaloric dwarfism and hydronephrosis in diabetes insipidus. Am J Dis Child 1963;105:175–181.

    PubMed  CAS  Google Scholar 

  10. Forssman H. Is hereditary diabetes insipidus of nephrogenic type associated with mental deficiency? Acta Psychol Neurol Scand 1955;30:577–587.

    CAS  Google Scholar 

  11. Macaulay D, Watson M. Hypernatremia in infants as a cause of brain damage. Arch Dis Child 1967;42:485–491.

    PubMed  CAS  Google Scholar 

  12. Bichet DG. Vasopressin receptor mutations in nephrogenic diabetes insipidus. Semin Nephrol 2008;28:245–251.

    PubMed  CAS  Google Scholar 

  13. Kanzaki S, Omura T, Miyake M et al. Intracranial calcification in nephrogenic diabetes insipidus. JAMA 1985;254:3349–3350.

    PubMed  CAS  Google Scholar 

  14. Schofer O, Beetz R, Kruse et al. Nephrogenic diabetes insipidus and intracerebral calcification. Arch Dis Child 1990;65:885–887.

    PubMed  CAS  Google Scholar 

  15. Hoekstra JA, van Lieburg AF, Monnens LAH et al. Cognitive and psychosocial functioning of patients with nephrogenic diabetes insipidus. Am J Med Genet 1996;61:81–88.

    PubMed  CAS  Google Scholar 

  16. Uribarri J, Kaskas M. Hereditary nephrogenic diabetes insipidus and bilateral nonobstructive hydronephrosis. Nephron 1993;65:346–349.

    PubMed  CAS  Google Scholar 

  17. Shalev H, Romanovsky I, Knoers NV et al. Bladder function impairment in aquaporin-2 defective nephrogenic diabetes insipidus. Nephrol Dial Transplant 2004;19:608–613.

    PubMed  CAS  Google Scholar 

  18. Ulinski T, Grapin C, Forin V et al. Severe bladder dysfunction in a family with ADH receptor gene mutation responsible for X-linked nephrogenic diabetes insipidus. Nephrol Dial Transplant 2004;19:2928–2929.

    PubMed  CAS  Google Scholar 

  19. Monnens L, Smulders Y, van Lier H et al. DDAVP test for assessment of renal concentrating capacity in infants and children. Nephron 1991;29:151–154.

    Google Scholar 

  20. Katsura T, Ausiello DA, Brown D. Direct demonstration of aquaporin-2 water channel recycling in stably transfected LCC-PK1 epithelial cells. Am J Physiol 1996;39:F548–553.

    Google Scholar 

  21. Noda Y, Sasaki S. Regulation of aquaporin-2 trafficking and its binding protein complex. Biochem Biophys Acta 2006;1758:1117–1125.

    PubMed  CAS  Google Scholar 

  22. Sasaki S, Noda Y. Aquaporin-2 protein dynamics within the cell. Curr Opin Nephrol Hypertens 2007;16:348–352.

    PubMed  CAS  Google Scholar 

  23. Bouley R, Hasler U, Lu HA et al. Bypassing vasopressin receptor signalling pathways in nephrogenic diabetes insipidus. Semin Nephrol 2008;28:266–278.

    PubMed  CAS  Google Scholar 

  24. Fushimi K, Sasaki S, Muramo F. Phosphorylation of serine 256 is required for cAMP-dependent regulatory exocytosis of the aquaporin-2 water channel. J Biol Chem 1997;272:14800–14804.

    PubMed  CAS  Google Scholar 

  25. Katsura T, Gustafson CE, Ausiello DA. Protein kinase A phosphorylation is involved in regulated exocytosis of aquaporin-2 in transfected LCC-PK1 cells. Am J Physiol 1997;272:F816–F822.

    CAS  Google Scholar 

  26. Klussmann E, Maric K, Wiesner B et al. Protein kinase A anchoring proteins are required for vasopressin-mediated translocation of aquaporin-2 into cell membranes of renal principal cells. J Biol Chem 1999;274:4934–4938.

    PubMed  CAS  Google Scholar 

  27. Kamsteeg EJ, Heijnen I, van Os CH et al. The subcellular localization of an aquaporin-2 tetramer depends on the stoichiometry of phosphorylated and nonphosphorylated monomers. J Cell Biol 2000;1:919–930.

    Google Scholar 

  28. Bouley R, Breton S, Sun TX et al. Nitric oxide and atrial natriuretic factor stimulate cGMP-dependent membrane insertion of aquaporin 2 in renal epithelial cells. J Clin Invest 2000;106:1115–1126.

    PubMed  CAS  Google Scholar 

  29. Chou C-L, Yip K-P, Michea L et al. Regulation of aquaporin-2 trafficking by vasopressin in renal collecting duct: roles of ryanodine-sensitive Ca2+ stores and calmodulin. J Biol Chem 2000;275:36839–36846.

    PubMed  CAS  Google Scholar 

  30. Yip KP. Epac-mediated Ca(2+) mobilization and exocytosis in inner medullary collecting duct. Am J Physiol Renal Physiol 2006;291:F882–F890.

    PubMed  CAS  Google Scholar 

  31. Simon H, Gao Y, Franki N, Hays RH. Vasopressin depolymerizes apical F-actin in rat inner medullary collecting duct. Am J Physiol 1993;265:C757–C762.

    PubMed  CAS  Google Scholar 

  32. Valenti G, Procino G, Carmosino M et al. The phosphatase inhibitor okadaic acid induces AQP2 translocation independently from AQP2 phosphorylation in renal collecting duct cells. J Cell Sci 2000;113:1985–1992.

    PubMed  CAS  Google Scholar 

  33. Tamma G, Klussmann E, Oehilke J et al. Actin remodeling requires ERM function to facilitate AQP2 apical targeting. J Cell Sci 2006;118:3623–3630.

    Google Scholar 

  34. Inoue T, Nielsen S, Mandon B et al. SNAP-23 in rat kidney: co-localization with aquaporin-2 in collecting duct vesicles. Am J Physiol 1998;275:F752–760.

    PubMed  CAS  Google Scholar 

  35. Jo I, Harris HW, Amendt Raduege AM, Majewski RR et al. Rat kidney papilla contains abundant synaptobrevin protein that participates in the fusion of antidiuretic hormone-regulated water channel-containing endosomes in vitro. Proc Natl Acad Sci USA 1995;92:1876–1880.

    PubMed  CAS  Google Scholar 

  36. Liebenhoff U, Rosenthal W. Identification of Rab3-, Rab5a-, and synaptobrevin II-like proteins in a preparation of rat kidney vesicles containing the vasopressin-regulated water channel. FEBS Lett 1995;365:209–213.

    PubMed  CAS  Google Scholar 

  37. Nielsen S, Marples D, Birn H et al. Expression of VAMP2-like protein in kidney collecting duct intracellular vesicles. Colocalization with aquaporin-2 water channels. J Clin Invest 1995;96:1834–1844.

    PubMed  CAS  Google Scholar 

  38. Barile M, Pisitkun T, Yu MJ et al. Large scale protein identification in intracellular aquaporin-2 vesicles from renal inner medullary collecting duct. Mol Cell Proteomics 2005;4:1095–1106.

    PubMed  CAS  Google Scholar 

  39. Lu H, Sun TX, Bouley R et al. Inhibition of endocytosis causes phosphorylation (S256)-independent plasma membrane accumulation of AQP2. Am J Physiol 2004;286:F233–F243.

    CAS  Google Scholar 

  40. Russo LM, McKee M, Brown D. Methyl-beta-cyclodextrin induces vasopressin-independent apical accumulation of aquaporin-2 in the isolated, perfused rat kidney. Am J Physiol Renal Physiol 2006;291:F246–F253.

    PubMed  CAS  Google Scholar 

  41. Bouley R, Hawthorn G, Russo LM et al. Aquaporin 2 (AQP2) and vasopressin type 2 receptor (V2R) endocytosis in kidney epithelial cells: AQP2 is located in ‘endocytosis-resistant’ membrane domains after vasopressin treatment. Biol Cell 2006;98:215–232.

    PubMed  CAS  Google Scholar 

  42. Nejsum LN, Zelenina M, Aperia A et al. Bidirectional regulation of AQP2 trafficking and recycling: involvement of AQP2-S256 phosphorylation. Am J Physiol Renal Physiol 2005;288:F930–F938.

    PubMed  CAS  Google Scholar 

  43. Tajika Y, Matsuzaki T, Suzuki T et al. Aquaporin-2 is retrieved to the apical storage compartment via early endosomes and phosphatidylinositol 3-kinase-dependent pathway. Endocrinology 2004;145:4375–4383.

    PubMed  CAS  Google Scholar 

  44. Tajika Y, Masuzaki T, Suzuki T et al. Differential regulation of AQP2 trafficking in endosomes by microtubules and actin filaments. Histochem Cell Biol 2005;124:1–12.

    PubMed  CAS  Google Scholar 

  45. Mukhopadhyay D, Riezman H. Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science 2007;315:201–205.

    PubMed  CAS  Google Scholar 

  46. Kamsteeg EJ, Hendriks G, Boone M et al. Short-chain ubiquitination of the aquaporin-2 water channel. Proc Natl Acad Sci USA 2006;28:18344–18349.

    Google Scholar 

  47. Matsumura Y, Uchida S, Rai T et al. Transcription regulation of aquaporin-2 water channel gene by cAMP. J Am Soc Nephrol 1997;8:861–867.

    PubMed  CAS  Google Scholar 

  48. Carter C, Simpkiss M. The “carrier” state in nephrogenic diabetes insipidus. Lancet 1956;ii:1069–1073.

    Google Scholar 

  49. Knoers N, Heyden H, van der van Oost BA et al. Nephrogenic diabetes insipidus: close linkage with markers from the distal long arm of the human X chromosome. Hum Genet 1988;80:31–38.

    PubMed  CAS  Google Scholar 

  50. Ouweland AMW, van den Dreesen JCFM, Verdijk M et al. Mutations in the vasopressin type-2 receptor gene associate with nephrogenic diabetes insipidus. Nat Genet 1992;2:99–102.

    PubMed  Google Scholar 

  51. Pan Y, Metzenberg A, Das S et al. Mutations of the V2 receptor are associated with X-linked nephrogenic diabetes insipidus. Nat Genet 1992;2:103–106.

    PubMed  CAS  Google Scholar 

  52. Rosenthal W, Seibold A, Antamarian A et al. Molecular identification of the gene responsible for congenital nephrogenic diabetes insipidus. Nature 1992;359:233–235.

    PubMed  CAS  Google Scholar 

  53. Schreiner RL, Skafish PR, Anand SK et al. Congenital nephrogenic diabetes insipidus in a baby girl. Arch Dis Child 1978;53:906–915.

    PubMed  CAS  Google Scholar 

  54. Langley JM, Balfe JW, Selander T et al. Autosomal recessive inheritance of vasopressin-resistant diabetes insipidus. Am J Med Genet 1991;38:90–94.

    PubMed  CAS  Google Scholar 

  55. Brodehl J, Braun L. Familiarer Nephrogener Diabetes Insipidus mit voller Auspragung bei einer weiblichen Saugling. Klin Wochenschr 1964;42:563.

    PubMed  CAS  Google Scholar 

  56. Deen PMT, Verdijk MAJ, Knoers NVAM et al. Requirement of human renal water channel aquaporin-2 for vasopressin-dependent concentration of urine. Science 1994;264:92–95.

    PubMed  CAS  Google Scholar 

  57. Mulders SM, Bichet DG, Rijss JPL et al. An aquaporin-2 water channel mutant which causes autosomal dominant nephrogenic diabetes insipidus is retained in the Golgi complex. J Clin Invest 1998;102:57–66.

    PubMed  CAS  Google Scholar 

  58. Arthus M-F, Lonergan M, Crumley MJ et al. Report of 33 novel AVPR2 mutations and analysis of 117 families with X-linked Nephrogenic diabetes insipidus. J Am Soc Nephrol 2000;11:1044–1054.

    PubMed  CAS  Google Scholar 

  59. Bichet DG, Razi M, Lonergan M et al. Hemodynamic and coagulation responses to 1-desamino[8-D-arginine] vasopressin in patients with congenital nephrogenic diabetes insipidus. N Engl J Med 1988;318:881–887.

    PubMed  CAS  Google Scholar 

  60. Ouweland AMW, van den Knoop MT, Knoers NVAM, et al. Colocalization of the gene for nephrogenic diabetes insipidus (DIR) and the vasopressin type-2 receptor (AVPR2) in the Xq28 region. Genomics 1992;13:1350–1353.

    PubMed  Google Scholar 

  61. Birnbaumer M, Seibold A, Gilbert S et al. Molecular cloning of the receptor for human antidiuretic hormone. Nature 1992;357:333–335.

    PubMed  CAS  Google Scholar 

  62. Morello J-P, Bichet DG. Nephrogenic diabetes insipidus. Annu Rev Physiol 2001;63:607–630.

    PubMed  CAS  Google Scholar 

  63. Knoers NVAM, Deen PMT. Molecular and cellular defects in nephrogenic diabetes insipidus. Pediatr Nephrol 2001;16:1146–1152.

    PubMed  CAS  Google Scholar 

  64. Innamorati G, Sadeghi H, Birnbaumer M. A full active nonglycosylated V2 vasopressin receptor. Mol Pharmacol 1996;50:467–473.

    PubMed  CAS  Google Scholar 

  65. Innamorati G, Sadeghi H, Eberle AN et al. Phosphorylation of the V2 vasopressin receptor. J Biol Chem 1997;271:2486–2492.

    Google Scholar 

  66. Innamorati G, Sadeghi HM, Tran NT et al. A serine cluster prevents recycling of the V2 vasopressin receptor protein. Proc Natl Acad Sci USA 1998;95:2222–2226.

    PubMed  CAS  Google Scholar 

  67. Schülein R, Rutz C, Rosenthal W. Membrane targeting and determination of transmembrane topology of the human vasopressin V2 receptor. J Biol Chem 1996;271:28844–28852.

    PubMed  Google Scholar 

  68. Krause G, Hermosilla R, Oksche A et al. Molecular and conformational features of a transport-relevant domain in the C-terminal tail of the vasopressin V2 receptor. Mol Pharmacol 2000;57:232–242.

    PubMed  CAS  Google Scholar 

  69. Schülein R, Liebenhoff U, Muller H et al. Properties of the human arginine vasopressin V2 receptor after site-directed mutagenesis of its putative palmitoylation site. J Biol Chem 1996;313:611–616.

    Google Scholar 

  70. Deen PMT, Brown D. Trafficking of native and mutant mammalian MIP proteins. In Current Topics in Membranes: Water Channels. Hohmann S, Agre P, Nielsen S (eds.). San Diego, CA, Academic Press, 2001, pp. 235–276.

    Google Scholar 

  71. Robben JH, Knoers NV, Deen PM. Characterization of vasopressin V2 receptor mutants in nephrogenic diabetes insipidus in a polarized cell model. Am J Physiol Renal Physiol 2005;289:F265–F272.

    PubMed  CAS  Google Scholar 

  72. Ellgaard L, Helenius A. ER quality control: towards an understanding at the molecular level. Curr Opin Cell Biol 2001;13:431–437.

    PubMed  CAS  Google Scholar 

  73. Hermosilla R, Oueslati M, Donalies U et al. Disease-causing vasopressin receptors are retained in different compartments of the early secretory pathway. Traffic 2004;5:993–1005.

    PubMed  CAS  Google Scholar 

  74. Ala Y, Morin D, Sabatier N et al. Functional studies of twelve mutant V2 vasopressin receptors related to nephrogenic diabetes insipidus: molecular basis of a mild phenotype. J Am Soc Nephrol 1998;9:1861–1872.

    PubMed  CAS  Google Scholar 

  75. Bernier V, Lagace M, Lonergan M et al. Functional rescue of the constitutively internalized V2 vasopressin receptor mutant R137H by the pharmacological chaperone action of SR49059. Mol Endocrinol 2004;18:2074–2084.

    PubMed  CAS  Google Scholar 

  76. Barak LS, Oakley RH, Laporte SA et al. Constitutive arrestin-mediated desensitization of a human vasopressin receptor mutant associated with nephrogenic diabetes insipidus. Proc Natl Acad Sci USA 2001;98:93–98.

    PubMed  CAS  Google Scholar 

  77. Postina R, Ufer E, Pfeiffer R et al. Misfolded vasopressin V2 receptors caused by extracellular point mutations entail congenital nephrogenic diabetes insipidus. Mol Cell Endocrinol 2000;164:31–39.

    PubMed  CAS  Google Scholar 

  78. Faerch M, Christensen JH, Corydon TJ et al. Partial nephrogenic diabetes insipidus caused by a novel mutation in the AVPR2gene. Clin Endocrinol 2008;68:395–403.

    CAS  Google Scholar 

  79. Kalenga K, Persu A, Goffin E et al. Intrafamilial phenotype variability in nephrogenic diabetes insipidus. Am J Kidney Dis 2002;39:737–743.

    PubMed  Google Scholar 

  80. Fushimi K, Uchida S, Harra Y et al. Cloning and expression of apical membrane water channel of rat kidney collecting tubule. Nature 1993;361:549–552.

    PubMed  CAS  Google Scholar 

  81. Jung JS, Preston GM, Smith BL et al. Molecular structure of the water channel through aquaporin-CHIP. J Biol Chem 1994;269:14648–14654.

    PubMed  CAS  Google Scholar 

  82. Schenk AP, Werten PJL, Scheuring S et al. The 4.5 Å structure of human AQP2. J Mol Biol 2005;350:278–289.

    PubMed  CAS  Google Scholar 

  83. Loonen AJM, Knoers NVAM, van Os CH et al. Aquaporin 2 mutations in nephrogenic diabetes insipidus. Sem Nephrol 2008;28:252–265.

    CAS  Google Scholar 

  84. Marr N, Bichet DG, Hoefs S et al. Cell-biological and functional analysis of five new Aquaporin-2 missense mutations that cause recessive nephrogenic diabetes insipidus. J Am Soc Nephrol 2002;13:2267–2277.

    PubMed  CAS  Google Scholar 

  85. Lin SH, Bichet DG, Sasaki S et al. Two novel aquaporin-2 mutations responsible for congenital nephrogenic diaebetes insipidus in chinese families. J Clin Endocrinol Metab 2002;87:2694–2700.

    PubMed  CAS  Google Scholar 

  86. Iolascon A, Aglio V, Tamma G et al. Characterization of two novel missense mutations in the AQP2 gene causing nephrogenic diabetes insipidus. Nephron Physiol 2007;105:33–41.

    Google Scholar 

  87. Mulders SM, Knoers NVAM, van Lieburg AF et al. New mutations in the AQP2 gene in nephrogenic diabetes insipidus resulting in functional but misrouted water channels. J Am Soc Nephrol 1997;8:242–248.

    PubMed  CAS  Google Scholar 

  88. Deen PMT, Croes H, van Aubel RAMH et al. Water channels encoded by mutant aquaporin-2 genes in nephrogenic diabetes insipidus are impaired in their cellular routing. J Clin Invest 1995;95:2291–2296.

    PubMed  CAS  Google Scholar 

  89. Marr N, Kamsteeg EJ, van Raak M et al. Functionality of aquaporin-2 missense mutants in ressesive nephrogenic diabetes insipidus. Pflug Arch- Eur J Physiol 2001;442:73–77.

    CAS  Google Scholar 

  90. Tamarappoo BK, Verkman AS. Defective aquaporin-2 trafficking in nephrogenic diabetes insipidus and correction by chemical chaperones. J Clin Invest 1998;101:2257–2267.

    PubMed  CAS  Google Scholar 

  91. De Mattia F, Savelkoul PJ, Bichet DG et al. A novel mechanism in recessive nephrogenic diabetes insipidus: wild-type aquaporin-2 rescues the apical membrane expression of intracellularly retained AQP2-P262L. Hum Mol Genet 2004;13:3045–3056.

    PubMed  CAS  Google Scholar 

  92. Kamsteeg E-J, Wormhoudt TAM, Rijss JPL et al. An impaired routing of wild-type aquaporin-2 after tetramerization with an aquaporin-2 mutant explains dominant nephrogenic diabetes insipidus. EMBO J 1999;18:2394–2400.

    PubMed  CAS  Google Scholar 

  93. Kuwahara M, Iwai K, Ooeda T et al. Three families with autosomal dominant nephrogenic diabetes insipidus caused by aquaporin-2 mutations in the C-terminus. Am J Hum Genet 2001;69:738–748.

    PubMed  CAS  Google Scholar 

  94. Marr N, Bichet DG, Lonergan M et al. Heteroligomerization of an aquaporin-2 mutant with wild-type aquaporin-2 and their misrouting to late endosomes/lysosomes explains dominant nephrogenic diabetes insipidus. Hum Mol Genet 2002;11:779–789.

    PubMed  CAS  Google Scholar 

  95. van Lieburg AF, Knoers NVAM, Mallman R et al. Normal fibrinolytic responses to 1-desamino-8-D-arginine vasopressin in patients with nephrogenic diabetes insipidus caused by mutations in the aquaporin-2 gene. Nephron 1996;72:544–546.

    PubMed  CAS  Google Scholar 

  96. Moses AM, Sangai G, Miller JL. Proposed cause of marker vasopressin resistance in a female with X-linked recessive V2 receptor abnormality. J Clin Endocrinol Metab 1995;80:1184–1186.

    PubMed  CAS  Google Scholar 

  97. van Lieburg AF, Verdijk MAJ, Schoute F et al. Clinical phenotype of nephrogenic diabetes insipidus in females heterozygous for a vasopressin type-2 receptor mutation. Hum Genet 1995;96:70–78.

    PubMed  CAS  Google Scholar 

  98. Sato K, Fukuno H, Taniguchi T et al. A novel mutation in the vasopressin V2 receptor gene in a woman with congenital nephrogenic diabetes insipidus. Intern Med 1999;38:808–812.

    PubMed  CAS  Google Scholar 

  99. Chan Seem CP, Dossetor JF, Penney MD. Nephrogenic diabetes insipidus due to a new mutation of the arginine vasopressin V2 receptor gene in a girl presenting with non-accidental injury. Ann Clin Biochem 1999;36:779–782.

    PubMed  Google Scholar 

  100. Nomura Y, Onigata K, Nagashima T et al. Detection of skewed X-inactivation on two female carriers of vasopressin type 2 receptor gene mutation. J Clin Endocrinol Metab 1997;82:3434–3437.

    PubMed  CAS  Google Scholar 

  101. Satoh M, Ogikubo S, Yoshizawa-Ogasawara A. Correlation between clinical phenotypes and X-inactivation patterns in six female carriers with heterozygote vasopressin type 2 receptor mutations. Endocrine J 2008;55:277–284.

    CAS  Google Scholar 

  102. Marples D, Christensen S, Christensen EI et al. Lithium-induced down-regulation of aquaporin-2 water channel expression in rat kidney medulla. J Clin Invest 1995;95:1838–1845.

    PubMed  CAS  Google Scholar 

  103. Kwon T-H, Laursen UH, Marples D et al. Altered expression of renal AQPs and Na + transporters in rats with lithium-induced NDI. Am J Physiol 2000;279:F552–F564.

    CAS  Google Scholar 

  104. Marples D, Dorup J, Knepper MA et al. Hypokalemia-induced downregulation of aquaporin-2 water channel expression in rat kidney medulla and cortex. J Am Soc Nephrol 1996;6:325.

    Google Scholar 

  105. Frokiaer J, Marples D, Knepper M et al. Bilateral ureteral obstruction downregulates expression of the vasopressin-sensitive aquaporin-2 water channel in rat kidney medulla. J Am Soc Nephrol 1995;6:1012.

    Google Scholar 

  106. Teitelbaum I, Strasheim A, McGuinness S. Decreased aquaporin-2 content in chronic renal failure. J Am Soc Nephrol 1996;7:1273.

    Google Scholar 

  107. Sands JM, Naruse M, Jacobs JD et al. Changes in aquaporin-2 protein contribute to the urine concentrating defect in rats fed a low protein diet. J Clin Invest 1996;97:2807–2814.

    PubMed  CAS  Google Scholar 

  108. Apostel E, Ecelbarger CA, Terris J et al. Reduced renal medullary water channels expression in puromycin-aminonucleoside-induced nephrotic syndrome. J Am Soc Nephrol 1997;8:15–24.

    Google Scholar 

  109. Promeneur D, Kwon TH, Frokiaer J et al. Vasopressin (V2) receptor-dependent regulation of AQP2 expression in Brattleboro rats. Am J Physiol Renal Physiol 2000;279:F370–F382.

    PubMed  CAS  Google Scholar 

  110. Walker RJ, Weggery S, Bedford JJ et al. Lithium-induced reduction in urinary concentration ability and aquaporin-2(AQP2) excretion in healthy volunteers. Kidney Int 2005;67:291–294.

    PubMed  CAS  Google Scholar 

  111. Li Y, Shaw S, Kamsteeg E-J et al. Development of lithium-induced nephrogenic diabetes insipidus is dissociated from adenylyl cyclase activity. J Am Soc Nephrol 2006;17:1063–1972.

    PubMed  CAS  Google Scholar 

  112. Bedford JJ, Leader JP, Jing R et al. Amiloride restores renal medullary osmolytes in lithium-induced nephrogenic diabetes insipidus. Am J Physiol Renal Physiol 2008;294:F812–F820.

    PubMed  CAS  Google Scholar 

  113. Berl T. Impact of solute intake on urine flow and water excretion. J Am Soc Nephrol 2008;19:1076–1078.

    PubMed  CAS  Google Scholar 

  114. Crawford JD, Kennedy GC. Chlorothiazide in diabetes insipidus renalis. Nature 1959;193:891–892.

    Google Scholar 

  115. Monnens L, Jonkman A, Thomas C. Response to indomethacin and hydrochlorothiazide in nephrogenic diabetes insipidus. Clin Sci 1984;66:709–715.

    PubMed  CAS  Google Scholar 

  116. Rasher W, Rosendahl W, Henricho IA et al. Congenital nephrogenic diabetes insipidus: vasopressin and prostaglandins in response to treatment with hydrochlorothiazide and indomethacin. Pediatr Nephrol 1987;1:485–490.

    Google Scholar 

  117. Jakobsson B, Berg U. Effect of hydrochlorothiazide and indomethacin on renal function in nephrogenic diabetes insipidus. Acta Paediatr 1994;83:522–525.

    PubMed  CAS  Google Scholar 

  118. Alon U, Chan JCM. Hydrochlorothiazide-amiloride in the treatment of congenital nephrogenic diabetes insipidus. Am J Nephrol 1985;5:9–13.

    PubMed  CAS  Google Scholar 

  119. Knoers N, Monnens LAH. Amiloride-hydrochlorothiazide in the treatment of congenital nephrogenic diabetes insipidus. J Pediatr 1990;117:499–502.

    PubMed  CAS  Google Scholar 

  120. Pattaragarn A, Alon US. Treatment of congenital nephrogenic diabetes insipidus by hydrochlorothiazide and cyclooxygenase-2 inhibitor. Pediatr Nephrol 2003;18:1073–1076.

    PubMed  Google Scholar 

  121. Early LE, Orloff J. The mechanism of antidiuresis associated with the administration of hydrochlorothiazide to patients with vasopressin-resistant diabetes insipidus. J Clin Invest 1962;52: 2418–2427.

    Google Scholar 

  122. Shirley DG, Walter SJ, Laycock JF. The antidiuretic effect of chronic hydrochlorothiazide treatment in rats with diabetes insipidus. Clin Sci 1982;63:533–538.

    PubMed  CAS  Google Scholar 

  123. Cesar KR, Magaldi AJ. Thiazide induces water reabsorption in the inner medullary collecting duct of normal and Brattleboro rats. Am J Physiol 1999;277:F750–F756.

    Google Scholar 

  124. Magaldi AJ. New insights into the paradoxical effect of thiazides in diabetes insipidus therapy. Nephrol Dial Transplant 2000;15:1903–1905.

    PubMed  CAS  Google Scholar 

  125. Kim GH, Lee JW, Oh YK et al. Antidiuretic effect of hydrochlorothiazide in lithium-induced nephrogenic diabetes insipidus is associated with upregulation of aquaporin-2, Na-Cl co-transporter, and epithelial sodium channel. J Am Soc Nephrol 2004;15: 2836–2843.

    PubMed  CAS  Google Scholar 

  126. Morello J-P, Salahpour A, Laperriere A et al. Pharmacological chaperones rescue cell-surface expression and function of misfolded V2 vasopressin receptor mutants. J Clin Inves 2000;105:887–895.

    CAS  Google Scholar 

  127. Robben JH, Sze M, Knoers NV et al. Functional rescue of vasopressin V2 receptor mutants in MDCK cells by pharmacochaperones: relevance to therapy of nephrogenic diabetes insipidus. Am J Physiol Renal Physiol 2007;292:F253–F260.

    PubMed  CAS  Google Scholar 

  128. Bernier V, Morello JP, Zarruk A et al. Pharmacologic chaperones as a potential treatment for X-linked nephrogenic diabetes insipidus. J Am Soc Nephrol 2006;17:232–243.

    PubMed  CAS  Google Scholar 

  129. Bouley R, Pastor-Soler N, Cohen O et al. Stimulation of AQP2 membrane insertion in renal epithelial cells in vitro and in vivo by the cGMP phosphodiesterase inhibitor sildenafil citrate (Viagra). Am J Physiol Renal Physiol 2005;288:F1103–F1112.

    PubMed  CAS  Google Scholar 

  130. Kirchhausen T, Macia E, Pelish HE. Use of dynasore, the small molecule inhibitor of dynamin, in the regulation of endocytosis. Methods Enzymol 2008;438:77–93.

    PubMed  CAS  Google Scholar 

  131. Schöneberg T, Sandig V, Wess J et al. Reconstitution of mutant V2 vasopressin receptors by adenovirus-mediated gene transfer of a receptor fragment: molecular basis and clinical implication. J Clin Invest 1997;100:1547–1556.

    PubMed  Google Scholar 

  132. Yun J, Schoneberg T, Liu J et al. Generation and phenotype of mice harboring a nonsense mutation in the V2 vasopressin receptor gene. J Clin Invest 2000;106:1361–1371.

    PubMed  CAS  Google Scholar 

  133. Rojek A, Füchtbauer EM, Kwon TH et al. Severe urinary concentrating defect in renal collecting duct-selective AQP2 conditional-knockout mice. Proc Natl Acad Sci USA 2006;103:6037–6042.

    PubMed  CAS  Google Scholar 

  134. Knoers NVAM, Deen PMT. Van gen naar ziekte: van vasopressine V2 receptor en aquaporine-2 naar nefrogene diabetes insipidus. Dutch J Med 2000;144:24-–2-2404.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Knoers, N.V.A.M., Levtchenko, E.N. (2009). Nephrogenic Diabetes Insipidus. In: Avner, E., Harmon, W., Niaudet, P., Yoshikawa, N. (eds) Pediatric Nephrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76341-3_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76341-3_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76327-7

  • Online ISBN: 978-3-540-76341-3

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics