
K. Aberer et al. (Eds.): ISWC/ASWC 2007, LNCS 4825, pp. 792–801, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Spatially-Augmented Knowledgebase

Dave Kolas and Troy Self

BBN Technologies
1300 N. 17th St., Suite 400, Arlington, VA 22209

{dkolas,tself}@bbn.com

Abstract. As an increasing number of applications on the web contain some
elements of spatial data, there is a need to efficiently integrate Semantic Web
technologies and spatial data processing. This paper describes a prototype sys-
tem for storing spatial data and Semantic Web data together in a SPatially-
AUgmented Knowledgebase (SPAUK) without sacrificing query efficiency.
The goals are motivated through use several use cases. The prototype’s design
and architecture are described, and resulting performance improvements are
discussed.

1 Introduction

With the advent of social networking sites, wikis, and other web environments that
fall under the umbrella of web collaboration technologies, exposing the data behind
web sites in machine-readable formats is becoming ever more popular. Much of the
information linked and shared across the Web becomes more useful when combined
with its spatial context. Crime statistics, real-estate information, and restaurant re-
views are examples of information that is more useful when consumed from a spatial
perspective. Using Web 2.0 techniques, web sites commonly referred to as “mash-up”
sites are able to display information spatially. For example, one site may overlay
crime statistics on a map using Google Maps1 while another site displays houses for
sale on Google Maps. In both cases, the combination of data and capabilities is prede-
fined by the mash-up site and is only used for display purposes.

Semantic Web technologies, such as the Resource Description Framework (RDF)
and the SPARQL Protocol and RDF Query Language (SPARQL) are beginning to
eliminate this limitation. The graph structure of RDF along with the graph query ca-
pabilities of SPARQL make them ideal candidates for representing and searching the
ever-changing, interlinked, flexible data of the Web, which is not easily done using a
traditional relational database [1].

RDF databases, sometimes called triplestores, offer significant advantages over tra-
ditional structured databases for Semantic Web data [2], but are not optimized for
spatial information such as geographic coordinates. In this paper, we describe a Spa-
tially AUgmented Knowledgebase (SPAUK) that provides the high-performance
graph query capabilities needed for searching webs of data, without sacrificing
the spatial indexing and processing capabilities necessary for performing searches

1 http://maps.google.com

 Spatially-Augmented Knowledgebase 793

involving spatial extents and operators. Here we describe our motivations and exam-
ple use cases for the augmented knowledge base as well as the design and implemen-
tation results. Finally, we discuss the status of the prototype and future direction.

2 Motivation

While RDF and modern triple stores are efficient at storing and querying data linked
across multiple sources of information, they are poor performers when it comes to
spatial processing. The current standard for storing spatial data generally involves us-
ing an object-relational database augmented with spatial capabilities, such as Oracle
Spatial. While this approach has proven effective within a predominantly spatial envi-
ronment, the object-relational model lacks the flexibility of RDF and triple-stores that
make them attractive for searching linked data across multiple sources. The goal of
SPAUK here is to provide efficient storage and query of spatial data without sacrific-
ing the flexibility and graph search ability of RDF and triplestores.

2.1 Use Cases

Query Mash-ups
Online communities, specifically social networking sites, have led to a surge in avail-
able data about relationships between people. In many cases, a person will own an
identity on several sites and provide location information about where they live or
work. The graph structure of RDF makes it natural for representing the information
distributed across these sites. Combining the graph query capabilities enabled by RDF
with efficient spatial processing allows us to search for people based on profile data
from multiple online identities, filtered within a particular spatial boundary. As a de-
veloper, I may be organizing a working group and wish to find other developers near
me with similar interests. A graph search supplemented with spatial information al-
lows me to search for all employees of companies located within 2 miles of my com-
pany who are developers on SemWebCentral2 and have listed their employers on their
Facebook3 account. Given location information about local coffee shops, I can also
search for a coffee shop centrally located between us where we can meet. Searches
like these require the ability to link and search information from multiple online
sources while bounding the query and results within spatial constraints. Without spa-
tial query techniques, graph queries like these may waste time processing all coffee
shops, all SemWebCentral users, or all Facebook users before testing the location in-
formation to determine if they match the query.

Spatial Annotation
Web sites exist that allow users to submit reviews about all kinds of topics, including
movies, books, and restaurants. In the latter case, the geospatial information is impor-
tant when it is time to search reviews. A user will most likely only be interested in
|reviews of restaurants within a particular boundary or near a particular event.

2 http://www.semwebcentral.org
3 http://www.facebook.com

794 D. Kolas and T. Self

A knowledge base that allows efficient storage and search of interlinked data along
with geospatial data enables an application that allows users to annotate restaurants on
a map, review the restaurant, and provide details about the restaurant by linking to
other data or reviewers on the Web. Such an application would allow a search for
good restaurants near a particular conference.

2.2 Query Types

In order to support the combination of semantic and spatial data, one must consider
several different types of queries. The work [3] of Egenhofer on spatial query lan-
guages based on SQL defined three types of queries:

− Queries about spatial properties
− Queries about non-spatial properties
− Queries about both spatial and non-spatial properties

Applying these straightforward concepts to a Semantic Web system yields three
analogous query classes:

− Queries about spatial properties
− Queries about ontological properties
− Queries about both spatial and ontological properties

Among the spatial properties that can be queried over, several types of spatial queries
have been identified:

− Queries about the spatial properties of an individual
− Queries that relate individuals to a known location (point and range queries)
− Queries that relate individuals to one another (spatial join, nearest neighbor

queries)
− Queries that spatially aggregate individuals

We will now explore each of these types of spatial queries individually, as applied to
a storage mechanism that also supports ontological data.

The simplest type of spatial queries is queries for the location of a known
object: “Where is the location of Jimmy’s Pizza Parlor?” This type of query is essen-
tially straightforward data retrieval, and does not necessarily require any specialized
spatial processing. As such, a semantic system could support these queries without
modification.

The second type of spatial queries relates individuals to a known location. This
location could be another specific object in the knowledge base, i.e.: “Which gas sta-
tions are within 1 mile of Jimmy’s Pizza Parlor?” or an absolute location, i.e.:
“Which gas stations are within 1 mile of 38°N, 77°W?”. Naturally, these queries
must be crossed with ontological inference as well: “Which restaurants are within 1
mile of Gus’s Gas?” where ‘restaurants’ must include entities defined not specifically
as restaurants, but those defined as Pizza Parlors, Sub Shops, etc., also.

The third type of spatial queries relates individuals to one another. This class
includes both spatial joins and nearest neighbor queries. For example, “Where can I
go to buy bananas, milk, and a drill within a 2 mile radius?” involves not only the

 Spatially-Augmented Knowledgebase 795

spatial join between the individual places, but also the ontological inference of the
types of stores that sell the items in question.

Our spatial semantic knowledge base must be able to support all of these types of
queries, and combinations thereof, efficiently.

3 Related Work

Significant research has gone into creating various types of efficient spatial index
structures. These index structures are generally used as a supplemental index to an
object-relational database. Adding the supplemental indices allows the object-
relational databases to significantly increase their performance with respect to spatial
queries. The indices are attached to a column or columns defined as a spatial
datatype.

A wide variety of useful spatial index structures exist, each with its own positive
and negative characteristics. Most fall within a small number of major families, how-
ever. These are R-trees [4], quadtrees [5], and grid files [6]. Since we will not be at-
tempting to enhance these index structures in any way, our discussion in this area will
focus on which is appropriate to attach to a semantic knowledgebase.

4 Design

The primary goal of SPAUK is to provide efficient spatial processing for spatial se-
mantic systems. We can leverage the significant work that has gone into optimizing
database systems for spatial data processing. These systems typically employ a sup-
plementary spatial index to provide efficient spatial queries. As such, we chose to
design SPAUK as a semantic knowledgebase capable of supporting supplementary
spatial (and other) indices.

A secondary goal was to design a system such that the addition of spatial process-
ing to the system is as transparent as possible to the user. This means that from a cli-
ent’s point of view, all of the data, both the semantic data and the spatial data, is still
presented as a graph. To do this, the knowledge base presents itself as a standard
SPARQL endpoint. This allows any clients capable of interfacing via the SPARQL
protocol to utilize SPAUK.

Thus, the design must present one conceptual graph to its clients, and queries over
this graph must be divided appropriately into sub-queries which can be answered by
the various parts of the knowledgebase. Spatial parts of the query, including locations
and spatial relationships, must be sent to the spatial index and query processor. Non-
spatial components of the query must be sent to the underlying triplestore. Results
must be combined from the two parts to form a coherent answer. Moreover, data
which is inserted must find its way into the appropriate parts of the knowledge base.

4.1 Interface

As noted before, SPAUK’s external interface utilizes the SPARQL protocol for query
access. However, mapping queries that include spatial instances and relationships to

796 D. Kolas and T. Self

SPARQL is not necessarily straightforward. There are many possible ways that one
could use SPARQL for spatial data, and the ideal way has yet been attained [7]. For
our prototype, we stayed within the bounds of SPARQL as it is currently defined.
While this did not necessarily provide the cleanest possible spatial-semantic query in-
terface, it did allow us to utilize other semantic web software without modification.

In order to do this, we needed to define a set of classes and properties to represent
objects, attributes, and relationships that the knowledgebase could understand. Nu-
merous candidate representations already exist. GeoRSS is a good choice for repre-
senting spatial extents because it is simple, it already has an RDF syntax, and it is
based on the Open Geospatial Consortium’s standard for representing spatial extents,
Geography Markup Language (GML) [8]. Using another representation, such as the
spatial portions of a commonly used upper ontology, could have worked just as well.
For the spatial relationships, we decided to start with a set of qualitative topological
relationships based on the Region Connection Calculus [9]. First, we look at an ex-
ample of a Gas Station expressed using these concepts:

[] a gas:GasStation;
 gas:name “Gus’s Gas”;
 gas:brand gas:Exxon;
 gas:numberOfPumps “8”;
 georss:where [
 a gml:Point;
 gml:pos “38 -77”
].
].

The following is an example of the query, “Which gas stations are within 1 mile of
38°N, 77°W?” encoded as described.

SELECT ?x
WHERE {
 ?x a gas:GasStation;
 georss:where ?y.
 ?y rcc:part [
 a gml:Buffer;
 gml:radius “1”;
 gml:bufferGeometry [
 a gml:Point;
 gml:pos “38 -77”
].
].
}

This provides an interface for querying, but does not allow for insertion or deletion
of triples. Since this is a necessary for our system and is not yet part of the SPARQL
specification, we added HTTP interface methods for both insertion and deletion.
These methods merely require a set of RDF triples being posted to the appropriate
URLs. Together with the SPARQL methods, these methods define the entirety of the
external interface of SPAUK.

 Spatially-Augmented Knowledgebase 797

4.2 Architecture

In order to facilitate interoperability and leverage existing semantic web software, the
architecture of SPAUK is based on the Jena Semantic Web Framework4 and Joseki5.
Utilizing these tools allowed us to focus on the core query-splitting and spatial com-
ponents of SPAUK.

The basic idea of the architecture is to have a specialized SPAUKGraph implemen-
tation of the com.hp.hpl.jena.graph.Graph Java interface that deals with the splitting
and combining of the information that goes in and out of the knowledgebase.
SPAUKGraph deals directly with some set of IndexProcessors, which represent the
interface to the data stored in 1 or more supplemental indices. We address how the
Graph handles queries and insertion below.

Fig. 1. Class diagram for the SPAUKGraph and its relation to the IndexProcessors

4.2.1 Data Insertion
The underlying triplestore continues to be the master copy of all information in
SPAUK. All data inserted is in the form of statements, which are inserted directly
into the underlying triplestore.

There is an important dichotomy between the statements in the triplestore and the
contents of the supplemental indices. While the data in the tirplestore is a graph, the
data that goes in the supplemental indices are sets of discrete objects, i.e. spatial ex-
tents. This makes knowing when to insert an object into the supplemental index
somewhat tricky. The insertion interface sees the statements being added one at a
time, and must combine sets of them to form objects to be inserted. We accomplished
this through the use of Jena’s InfGraph. For each type of object that the system must

4 http://jena.sourceforge.net/
5 http://www.joseki.org/

798 D. Kolas and T. Self

watch for, a rule is added to an InfGraph layer above the underlying triplestore. The
head of the rule is a function that connects to the appropriate IndexProcessor to add an
object to the index. The rule will not fire until all required components are available.
This rule, for example, adds points to the spatial index processor when they are
inserted:

[point:
 (?x rdf:type gml:Point)(?x gml:pos ?pos) ->
 point(?x, ?pos)
]

This scheme allows for the insertion of objects into the indices without concerning
us with the transactionality of the data store. In fact, if part of a geometry definition is
inserted at some point, and then much later the rest of the definition is inserted, the
geometry will be indexed successfully at the later point. However, it does not account
for updates or deletions of statements corresponding to indexed objects. As such, in-
dexed objects are treated as immutable within the system. If the location of a restau-
rant changes, rather than changing the properties of the location object to which the
restaurant is attached, the restaurant must be severed from the location and a new lo-
cation created.

4.2.2 Querying
Querying the combined data storage is the most complicated part of the system. The
appropriate parts of the query must be partitioned among the underlying triplestore
and the supplemental indices, depending upon which parts are capable of most effi-
ciently answering each piece of the query.

When the SPAUKGraph receives the query, it first splits the query based on the
namespaces of the associated with the attached IndexProcessors. For each triple, the
namespace of the predicate or the Class (for rdf:type statements) is matched against
the namespaces associated with the IndexProcessors. If a namespace is not associ-
ateed with an IndexProcessor, it defaults to association with the underlying triplestore.
For instance, in the following query, the portion that must be processed by the spatial
index processor has been italicized:

SELECT ?x
WHERE{
 ?x a gas:GasStation;
 georss:where ?y.
 ?y rcc:part [
 a gml:Buffer;
 gml:radius “1”;
 gml:bufferGeometry [
 a gml:Point;
 gml:pos “38 -77”

].

].

}

 Spatially-Augmented Knowledgebase 799

Unfortunately, this assigns artificial meaning to the namespaces of which the query
processor is aware. This could lead to errors in processing if the users attempted to
extend the spatial ontologies in a way that the system did not understand. Since no
better way to divide the statements at the query level has yet come to light, this is the
method that the SPAUK prototype uses.

Once the query has been divided into appropriate parts, the SPAUKGraph must
make a best-effort attempt to determine which part of the query is the most selective.
Since it does not have any information about the selectivity of the query parts directly,
it must ask the underlying triplestore and the IndexProcessors to approximate the se-
lectivity of their parts of the query as an estimated number of results. Developing an
appropriate cost model for this is an area of future work. In the current implementa-
tion, if the spatial query processor receives a query for objects within a specified area,
it returns the highest possible selectivity and thus is chosen first. In all other cases,
the system defaults to allowing the triplestore to bind first. Other possibilities include
attempting to execute the different parts in parallel, however this was beyond the
scope of our prototype.

An initial subquery is chosen and then executed by either the underlying triplestore
or an IndexProcessor as appropriate. The bindings from this subquery are then ap-
plied to the other subqueries as they are executed. Since the linkage objects between
the spatial and non-spatial portions are bound at this point, it is expected that the se-
lectivity of the remaining bound subqueries should be extremely high.

Though SPAUK supports SPARQL, the SPARQL support is provided exclusively
by the ARQ component of Jena. Thus our system deals only with queries in the form
of simple graph patterns. This drastically reduces the amount of query processing
work that needs to be done; however, there are cases where this design creates
SPARQL queries that could not be properly optimized using the index. This could
happen if the definition of the range in a range query were split over an OPTIONAL
clause. Since these cases are primarily connected to poor query construction, we cur-
rently ignore them in the design.

4.3 Indices

The spatial index used in the prototype was a simple in-memory gridfile. This is not a
particularly sophisticated spatial index; however, the software was designed such that
substituting another indexing mechanism should be straightforward.

Ideally, we would like to add either a quadtree or R-tree indexing mechanism to
SPAUK. Having both available to spatial applications is ideal, since both have
strengths and weaknesses depending on the distribution of the data being stored. Par-
ticularly, quadtrees function better than R-trees when data is more evenly spatially
distributed, and R-trees function better when data is more spatially clustered. Since
there are applications which could potentially make use of both types of indices, the
option of both should exist. This is analogous to the spatial index support provided in
common spatial relational databases such as Oracle Spatial 10g.

5 Results

The SPAUK system was successfully implemented for a subset of the desired prob-
lem. Processing was implemented for two major types of spatial geometries: Points

800 D. Kolas and T. Self

and Polygons defined by an exterior linear ring. Rules were created to detect these
geometries and insert them into the index. Two spatial relationships were imple-
mented over these polygons, connected and part. These allowed us to sufficiently test
the query splitting mechanism.

Unfortunately, without the creation of spatial semantic benchmarks, we do not yet
have a way to empirically test the performance of the SPAUK system. However,
consideration of the prior art in the object-relational database realm and a careful look
at the index structures demonstrates that the technique is superior.

Consider attempting to build a system for spatial semantic data without any spatial
indexing. A query for all restaurants that are in a 2 mile radius from a given point
would clearly be O(n) in the number of restaurants, since the system would have to
compare each and every restaurant’s location to the spatial buffer area. However, if a
quadtree was used for spatial indexing, we would expect the time to find objects in
the radius to be logarithmic.

6 Conclusion

While we have not yet done formal analysis of the performance improvement caused
by using a supplemental spatial index, examples of the technique in the object-
relational database world, simple analysis of the algorithms involved, and preliminary
usage of the SPAUK system have shown that the approach is indeed valid. Attaching
a semantic GIS client to the SPAUK system provides responsive spatial semantic
query capability. We believe that this type of system enables a new class of semantic
applications whose full potential cannot yet be conceived. Waldo Tobler’s “first law
of geography” states, “Everything is related to everything else, but near things are
more related than distant things.” [10] Since a goal of the Semantic Web is to maxi-
mize the meaning of relationships, spatial information processing cannot be ignored.

7 Future Work

The first major piece of future work for the SPAUK system will be to fully implement
the GeoRSS geometry types and the RCC8 spatial relations. This will provide a fully
usable system for experimentation with spatial semantic data storage, and hopefully
provide others with a method of building spatial semantic applications when it soon
becomes open source.

The second piece of future work involves significantly more formal performance
testing. However, this will require several other advancements. First, a benchmark
for spatial semantic data must be created. This could very well be an enhancement of
the Lehigh University Benchmark (LUBM) [11]. Secondly, SPAUK would need to
be attached to a more robust spatial index, such as a persistent R-tree. With these
modifications in place, SPAUK will be formally compared to a semantic spatial sys-
tem in which spatial calculations are performed only as function calls in rules.

Finally, extending the SPAUK implementation with a temporal index or other indi-
ces is very desirable. The architecture is built not just for one supplemental index, but
for many; hopefully it can provide benefit for a wide variety of application areas.

 Spatially-Augmented Knowledgebase 801

Acknowledgements. We wish to thank Mike Dean and BBN Technologies for their
support of this effort and helpful comments on the paper.

References

1. Connected Services Framework 3.0 Developers Guide. Microsoft (2006)
2. Lassila, O., Hendler, J.: Embracing Web 3. IEEE 11, 90–93 (2007)
3. Egenhofer, M.: Spatial SQL: A Query and Presentation Language. IEEE Transactions on

Knowledge and Data Engineering 6, 86–95 (1994)
4. Guttman, A.: R-trees: a dynamic index structure for spatial searching. ACM Press, New

York (1984)
5. Finkel, R.A., Bentley, J.L.: Quad trees a data structure for retrieval on composite keys, pp.

1–9. Springer, Heidelberg (1974)
6. Nievergelt, J., Hinterberger, H., Sevcik, K.C.: The Grid File: An Adaptable, Symmetric

Multikey File Structure, vol. 9, pp. 38–71. ACM Press, New York (1984)
7. Kolas, D.: Supporting Spatial Semantics with SPARQL (2007)
8. ISO/TC 211/WG 4/PT 19136 Geographic information - Geography Markup Language

(GML) (2004)
9. Cohn, A.G., Bennett, B., Gooday, J., Goss, N.M.: Qualitative Spatial Representation and

Reasoning with the Region Connection Calculus. GeoInformatica 1, 275–316 (1997)
10. Tobler, W.R.: A Computer Movie Simulating Urban Growth in the Detroit Region.

JSTOR 46, 234–240 (1970)
11. Guo, Y., Pan, Z., Heflin, J.: LUBM: A Benchmark for OWL Knowledge Base Systems.

Journal of Web Semantics 3, 158–182 (2005)

	Spatially-Augmented Knowledgebase
	Introduction
	Motivation
	Use Cases
	Query Types

	Related Work
	Design
	Interface
	Architecture
	Indices

	Results
	Conclusion
	Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

