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Abstract. Automated acquisitions in microscopy may come along with
strong illumination artifacts due to poor physical imaging conditions.
Such artifacts obviously have direct consequences on the efficiency of
an image analysis algorithm and on the quantitative measures. In this
paper, we propose a method to correct illumination artifacts on biologi-
cal images. This correction is based on orthogonal polynomial modeling,
combined with stationary maximization criteria. To validate the pro-
posed method we show that we improve particle detection algorithm.

Index Terms: Biomedical Image Processing, Image Analysis, Image
Enhancement, Object Detection, Biomedical Microscopy.

1 Introduction

Modern microscopy and robotic technologies allow a very large amount of visual
information to be collected and analyzed automatically. These new systems make
the visual inspection of the pictures totally obsolete, but also give a chance for
an objective quantitative measurements on cell experiments. Nuclei, endosomes
and other particles detection is a common request for biological image analysis.
However illumination artifacts systematically occur on 2D cross-section confo-
cal microscopy imaging platforms. These biases can strongly corrupt a higher
level image analysis such as segmentation, fluorescence evaluation or even pat-
tern extraction / recognition [1,2,3]. To overcome this drawback many methods
have already been proposed in literature. A reader can refer to [4] for a com-
parative evaluation of the most common intensity inhomogeneities correction
techniques. In this paper, we make the assumption that bias generates a non
stationary process which can be corrected by orthogonal polynomial modeling.
This paper presents a new fully automated bias correction methodology, which
improve low level biological image analysis such as segmentation or particle de-
tection algorithm. A relevant protocol validates the correction algorithm and
shows outperforming extraction on corrupted images. This paper deals with 2D
fluorescence confocal microscopy, but the framework can be easily extended to
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many other biological imaging techniques. In section 2 the stationarity defini-
tion is recall. In section 3 we describe the polynomials correction framework. In
section 4 we propose to validate this methodology by classical features detection
in cell images. Finally, we conclude in section 5.

2 Stationarity Definitions

In signal processing, according to the traditional definition, a time series, Xt, is
stationary in the wide sense, if:

⎧
⎨

⎩

∀t ∈ Z, E(|X2
t |) < ∞,

∀t ∈ Z, E(Xt) = m,
∀(t, h) ∈ Z

2, Cov(Xt, Xt+h) = E[(Xt+h − m)(Xt − m)] = γ(h),
(1)

in which E(.) is the expectation value and Cov(.) is the covariance function.
If we refer to the terminologies from Nelson and Plosser [5], two classes of non

stationary process exist: the Trend Stationary (TS) process and the Differency
Stationary (DS) process of ordre d. For TS process, the non stationarity follows
a determinism model and can be written:

Xt = g(t) + εt,

with g(t) a time dependent function and εt a stationary stochastic process. A
simple example of a TS process is a linear trend disturbed by a white noise. In
this case g(t) = a0 + a1t with a0, a1 ∈ R and εt i.i.d N (0, σ2).

The DS process is given by Xt = (1−L)dXt, with L the lag operator (LXt =
Xt−1∀t ∈ Z) and d ∈ Z. Thus, for a DS process the trend is not a determinism
one but stochastic. A famous example is the pure random walk defined by Xt =
Xt−1 + εt.

Shading phenomenon is often defined as a smooth intensity variation, leading
to a nonuniform illumination of the image. Based on this definition, we assume
that the corrupted images can be seen as a TS process. Moreover, we consider
that g(t) can be modelled by a polynomial P (t). As we are dealing with 2D
images, the time t is replaced by the spatial coordinates (x, y). Thus, for the
following, P (t) and εt will be respectively noted P (x, y) and εx,y where (x, y) is
the spatial location of a specific point within the image.

3 Bias Image Correction Via Stationarity Maximization

3.1 Legendre Polynomials Approximation

In our context, we consider that each pixel f(x, y) of an image f is a combination
of its real intensity u(x, y), an illumination bias artifact b(x, y), and an additive
white Gaussian noise εx,y ≡ N (0, σ2

noise) [6]. The relation is given by:

f = ub + ε. (2)



Bias Image Correction Via Stationarity Maximization 695

According to (2), to correct each picture, we divide the observed signal f by
the estimated bias b̃m,n. Thus, this equation becomes:

f

b̃m,n

=
ub

b̃m,n

+
ε

b̃m,n

,

where (m, n) are respectively the x and y polynomial orders. We systematically
apply a Gaussian filtering to the image prior to estimating the bias. Hence,
ε << b̃m,n can be omitted and we obtain:

f

b̃m,n

≈ ub

b̃m,n

≈ u.

To perform this correction, we model the trend b̃m,n of the intensity distribu-
tion by using orthogonal polynomial functions [7].

The orthogonal polynomials p.(x) is computed according to the following re-
currence relation [8]:

⎧
⎨

⎩

p0(x) = 1,
p1(x) = x,
pm+1(x) = (am + xbm)pm − cmpm−1,

where the triplet (am; bm; cm) defines a specific polynomial family. In addition to
its orthogonality properties, the Legendre polynomial is particularly well suited
in our case because of its constant density and its limited interval (x ∈ [−1; +1]).
A set of 2D orthogonal polynomials basis can be computed by a linear com-
bination of 1D Legendre polynomials. Thus, polynomial images Pm,n(x, y;A)
((m, n) ∈ N

+) are computed given the following formula:

Pm,n(x, y;A) =
1

(n + 1)(m + 1)

n∑

j=0

m∑

i=0

αi,jpi(x)pj(y), (3)

where αi,j ∈ R and (x, y) ∈ [−1, +1] and A is a matrix containing the αi,j values.
Figure 1 shows the 2D Legendre polynomial basis from degree 0 to degree 3.

For each corrupted image f , the evaluation of the (n + 1)(m + 1) parameters
αi,j of (3) is based on a least-square minimization of the functional Em,n(A)
given by:

Em,n(A) =

(
∑

y

∑

x

(Pm,n(x, y;A) − f(x, y))2
) 1

2

, (4)

using the multi-dimensional Polak-Ribiere conjugate gradient minimization
method [9]. The minimization result min(Em,n(A)) gives us the αi,j values cor-
responding to the estimated bias b̃m,n (see figures 2 & 3) for a specific (m, n)
combination.
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Fig. 1. 2D Legendre polynomials basis for low degree polynomials
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Fig. 2. Bias estimations with (m, n) ∈ [0; 4] corresponding to I1 in figure 3. The out-
lined bias picture (m = 3; n = 2) corresponds to the optimal correction map according
to the stationarity criterion.
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3.2 Stationarity Maximization

Obviously, the best correction results (i.e. satisfying as well as possible the sta-
tionarity assumptions) are not given by the highest values of the (m, n) couple.
Indeed, with a too high polynomial degree, the correction map will not only fit
the trend of the illumination artifact but the image details also, which may not be
relevant for the correction. Experiments corroborate this assumption and lead us
to determine these degrees in an automated way. For this, we extract this optimal
result within the optimizations realized for (m, n) ∈ [0; 4] and defined in (4).

The first one imposes that the energy of the signal is finite. This property is
always verified due to the discretization phenomenon.

The second one, the most important in the case of a trend stationary process,
imposes that the expectation is not related to the temporal (or spatial) variable.
To evaluate the spatial variation of the local mean μt over the image, we compute
the standard deviation σ(μt) of this signal on a sliding window. The size of the
window must be large enough to provide a significant statistical representation
of the imaged phenomena.

Removing the trend in a TS process can introduce an unitary root (i.e a
correlation between the variable in time (t) and in (t − h), h ∈ N

+) and thus
turns a TS into a DS process. In order to discriminates these two cases, we verify
the independence of the second order moment σ2 over the time, satisfying the
third property of (1) for h = 0.

Biased Images: f

Estimated Bias: b

Corrected Images: u

b3,2b2,3 b4,2

(µt)=0.358
(  t)=9.085σ

σ
σ

(µt)=0.249
(  t)=7.583σ

σ
σ

(µt)=0.349
(  t)=28.056σ

σ
σ

(µt)=0.173
(  t)=17.09σ

σ
σ

(µt)=0.157
(  t)=4.791σ

σ
σ

(µt)=0.083
(  t)=2.841σ

σ
σ

Fig. 3. Examples of biased images obtained by three different confocal microscopes for
three different biological applications. The optimal correction maps are not given by
the maximal order polynomials, but really depend of the illumination artifacts trend.
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Finally, the optimal result corresponds to the estimated bias that minimize
the variation of this two moments. Figure 2 displays a set of bias estimations
corresponding to the image I1 in figure 3. The outlined bias picture gives the
best result according to our stationary criteria. Figure 3 displays three different
biased images and their optimal correction maps associated. We can noticed that
the maximal stationarity is reached for various orthogonal polynomial degrees
demonstrating the accuracy of our primary assumption.

4 Biological Applications and Results

This section describes a framework for extracting circular objects within cells
in a relevant way. This method can be applied to any kind of spot detection
requirement, such as endosomes localization. In our purpose, objects can be
considered rotationally invariant. Thus, the Hessian Hσ operator is perfectly
appropriate, where the parameter σ is selected to match the spot candidate size.
Thanks to this value, we are able to extract a wide variety of biological objects.
Hσ allows us to define two curvature maps CM and CG coming respectively
from the mean and the Gaussian curvatures as defined in [10]. To discriminate
the “dome” topographic class from the other classes, we keep only the positive
values of CM and CG.

The curvature map ucurv is computed by ucurv = CM .CG (see figure 4e). As
it is usual in cytometry imaging, one wavelength is dedicated to nucleus and/or
cytoplasm imaging. This channel allows us to create a binary cells mask umask

using a simple segmentation method such as K-means clustering (see figure 4d).
It is important to notice that the robustness of this step is highly correlated to
the restoration step quality.

Pixels are weighted by an approximation of the Euclidean distance obtained
by computing a connexity distance field. The distance map udist obtained is
combined to ucurv by ures = udist.ucurv (see figure 4g). A threshold τmin is then
applied to avoid false detections within ures.

To conclude the process, a local maxima extraction is done. In our specific
application, the minimum distance allowed between two successive extracted
spots is given by 3σ.

To assess the robustness of our correction method, we have created a ground
truth based on three different biological assays. The ground truth was built

Table 1. κ index and overlap coefficient for three different experiments. κ and Cover

values higher than 0.7 usually represent very good results.

κ(f) Cover(f) κ(u) Cover(u)
experiment 1 0.683 0.531 0.898 0.814
experiment 2 0.636 0.467 0.836 0.747
experiment 3 0.542 0.421 0.867 0.813
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by manually selecting the right objects corresponding to the expected feature
locations. Then to qualify these results, two statistical coefficients are computed:

– the kappa index (κ) defined by [11] :

κ = 2
#(gt ∩ d)

#(d) + #(gt)
; (5)

– the overlapping coefficient defined by:

Cover =
#(gt ∩ d)

#(gt ∩ d) + #(fp) + #(fn)
, (6)

where gt is the ground truth, d the detected objects, fp and fn the false positives
and false negatives respectively, and # the cardinal of the set. Table 1 shows
the results and underlines the accuracy of the correction process for different
experiments.

(d) Segmented image: Imask

(e) Curvature map: Icurv(c) Green channel: Igreen

(b) Red channel: Ired
(f) Distance map: Idist

(a) Original Image: I

(g) Weighted picture: Ires

(h) Detected particles
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Fig. 4. Step by step particles detection in 2-channel images. (a) original image. (h)
detected particles locations.

5 Conclusion

In this paper, we have shown that illumination bias can have important con-
sequences on low level biological image processing quality. To overcome this
drawback, we presented a novel shading correction approach based on the im-
age stationary maximization via Legendre polynomials modeling. This image
enhancement was used for correcting different cell images. The visual quality of
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the corrected results is high and was confirmed by a ground truth based features
detection. As, this method produced significant improvement of traditional bio-
logical objects detection under different imaging conditions, it could be used as
a pre-processing step for any kind of higher level process. In the future, we plan
to propose a 3D implementation of this shading correction framework.
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