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Abstract. Accurately describing interactions between medical devices
and anatomical structures, or between anatomical structures themselves,
is an essential step towards the adoption of computer-based medical sim-
ulation as an alternative to traditional training methods. However, while
substantial work has been done in the area of real-time soft tissue mod-
eling, little has been done to study the problem of contacts occurring
during tissue manipulation. In this paper we introduce a new method
for correctly handling complex contacts between various combination of
rigid and deformable objects. Our approach verifies Signorini’s law by
combining Lagrange multipliers and the status method to solve unilat-
eral constraints. Our method handles both concave and convex surfaces
by using a displacement subdivision strategy, and the proposed algorithm
allows interactive computation times even in very constrained situations.
We demonstrate the efficiency of our approach in the context of inter-
ventional radiology, with the navigation of catheters and guidewires in
tortuous vessels and with the deployment of coils to treat aneurysms.

1 Introduction

Real-time soft tissue modeling has been the focus of a majority of publications in
the field of medical simulation [1,2,3,4]. This can be explained by the importance
of tissue-tool interactions in the overall realism of a simulation, but also by the
complexity of the problem. Accurately modeling the deformation of an anatom-
ical structure during tissue manipulation is a very difficult task, in particular
when non-linear stress-strain relationships are required while at the same time
maintaining real-time computation [2,4]. However, even complex models cannot
correctly describe soft tissue deformations unless the contacts occurring during
tissue manipulation are correctly determined. Very often, interactions are lim-
ited to a single point of contact [5] or at least a very localized area of contact,
that would correspond for instance to grasping the tissue or probing it. There
are many medical procedures, however, where such limited interactions are not
sufficient. For instance, in surgery, tissue palpation requires much more complex
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interactions, and in laparoscopic surgery, many procedures require a combination
of sliding and grasping that cannot be modeled by usual approaches. A very illus-
trative example is found in interventional radiology, with catheter navigation or
coil deployment. Such procedures involve inserting or deploying flexible devices
in very tight spaces, thus leading to a large number of contacts combined with
sliding conditions. Finally, besides contacts occurring during tissue-instrument
interactions, it is typical in surgical procedures that organs slide and collide
against other anatomical structures. Taking into account that type of contacts
would certainly have a positive impact on the realism of the simulation.

Modeling contacts involves not only detecting the occurrence of a contact but
also computing the involved structures’ collision response. While the problem
of collision detection has been often addressed in Computer Graphics and to
some extent in medical simulation, the issue of modeling the collision response
has mostly been addressed in the fields of Mechanical Engineering and Robotics.
However, when taking into account the particular constraints inherent to real-
time simulation and deformable structures, little has been done. Among the most
relevant work, Kry et al. [6] propose a technique well suited for evolving contacts
on a smooth surface, incorporating both slip and no-slip friction. Their method
is very fast but only handles simple contacts between rigid surfaces, which need
to be described as a parametrization. Garcia et al. [7] introduce a fast algorithm
based on fuzzy logic. Using kinetic and geometric information of a surgical tool
interacting with an organ, they compute the new position of the colliding vertices
using simple rules. However this method is limited to collisions between a rigid
object and a deformable one and the collision response, based on a projection
technique, does not take into account the physics of the objects in contact. The
method we previously introduced in [8] handles contacts by computing the local
compliance at the point of contact and by describing it in the contact space
using the Delassus operator. Collision detection is performed using a proximity
measure with the triangulation of the surface. The problem of multiple contacts
is then solved using an iterative solver, in particular a Gauss-Seidel algorithm.
Although efficient, this approach has a non-optimal rate of convergence that lead
to either non plausible behavior or increased computation times.

In this paper, we present a real-time algorithm based on Lagrange multipliers
to handle multiple complex contact situations between combinations of rigid and
deformable objects. After introducing some basic notions of contact mechanics,
we present in section 2.2 a method based on Lagrange multipliers to design a fast,
robust and generic algorithm to handle contacts between hundreds of colliding
degrees of freedom. We then describe in section 2.3 a fast collision detection
method based on implicit surface representation, and we conclude with a series
of results in the context of interventional radiology.

2 Contact Modeling

Modeling contacts is a well known topic in Computational Mechanics and has
recently been an active research field in Computer Graphics [9,10,11]. In this
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section we give an overview of the mechanics of contacts, in particular Signorini’s
law and its linearization in the contact space, formulated as the Delassus opera-
tor. Then we present our approach based on the use of Lagrange multipliers and
a displacement subdivision strategy.

2.1 Mechanics of Contacts

Definition. A contact is an unilateral constraint applied on a specific point P
(the contact point): g(P ) ≥ 0. A mechanical system usually defines a set of de-
grees of freedom (DOFs) x characterizing its physical state. Given this notation,
a contact gi links several DOFs via a linear relationship gi(x) =

∑
j hijxj . By

extension, a set of contacts gi(x) ≥ 0 noted g(x) are linked to a set of DOFs via
a matrix g(x) = Hx where each line of H expresses a contact relatively to the
DOFs.

Signorini’s Law. The conditions of contact are given by the Signorini’s law, for
each point P of the contact area, as: 0 ≤ δn

P ⊥ fn
P ≥ 0 where δn

P is the interpene-
tration distance evaluated at P (shortest euclidian distance to the other object’s
surface) and fn

P the amplitude of the normal force needed to solve the contact.
In the case of frictional sliding, a tangential component f t

P is introduced, leading
to a contact force fP = fn

P + f t
P . From a mathematical stand point, this law

translates the orthogonality between the contact force and the interpenetration
distance δn

P fn
P = 0. This means that either an interpenetration occurs, requiring

a non-null normal force to bring back the contact, or that the constraint is not
violated because the distance to the surface is non-null, therefore no force is
required to correct the position.

Delassus Operator. When dealing with simulations, the motion of the objects
is discretized into a series of time steps. Some of the external forces are known at
the beginning of a time step (gravity, user-specified forces, etc.) while others only
appear during the time step, and depend on the current state of the mechani-
cal system. This is the case of the contact forces. Such forces are called implicit,
while the known ones are called explicit. Dealing with implicit forces leads in gen-
eral to solving a non-linear problem. If the deformations are linear (or linearized
during the time step), a way of dealing with both implicit and explicit forces is
to split the computation in two steps. First we compute a configuration called
free motion, noted xf , in which we take into account only the explicit forces, not
the contacts. Second, a collision detection is performed and a corrective motion
xc is computed. The correction xc is such that the final position x = xf + xc

verifies the unilateral constraints. Separating explicit and implicit forces inde-
pendently is a consequence of the superposition principle, and therefore can
only be applied if the equations of motion are linearized. After computing xf we
can evaluate the actual contact violation δnfree

P and solve the contact problem
δn
P =

(
HCHT

)
fn

P + δnfree
P where C is the compliance matrix of the mechanical



Interactive Contacts Resolution Using Smooth Surface Representation 853

system, and the matrix HCHT expresses the contact’s coupling in the contact
space1 This operator is well known in mechanics as the Delassus operator, and
the previous equation is called a linear complementary problem (LCP). A LCP
can be solved in different ways, using a Lemke or Gauss-Seidel technique for
instance. Once the contact problem is solved, we obtain the contact force fn

P .
Since fn

P is defined in the contact space, it has to be transformed back to the
DOFs space before being applied to P . We write f = HT fn

P , and the solution
x verifying the constraints is then determined by x = xf + (CHT )fn

P .

2.2 Solving Contacts with Lagrange Multipliers

Lagrange multipliers is a well known mathematical method to define bilateral
constraints, although there exist a few references of work using Lagrange mul-
tipliers to solve unilateral constraints, such as [12] for instance. In this section
we describe our contact modeling algorithm and show the equivalence between
the definition of a contact in classical mechanics (Signorini’s law and Delassus
operator) and the use of Lagrange multipliers.

Solving Unilateral Contacts. If we assume that several objects are in contact
(these objects can be deformable, rigid or even inert) then we can define a me-
chanical system representing this set of objects. Whether it is static or dynamic,
the stiffness or mass matrix of the system will have a similar structure, i.e. a block
diagonal matrix where each block is the stiffness or mass matrix of an object
within the mechanical system. Without lack of generality, lets assume the system
is static, and that its stiffness matrix is K. In the absence of contacts, each block
of K is independent of the other ones. When contacts are detected, we introduce
Lagrange multipliers in the system, thus creating a dependency between certain
DOFs. Then, if we take into account the decomposition x = xf +xc, the contact
problem can be described as:

⎧
⎨

⎩

Kxf = f
Kxc = HT λ

H(xc + xf ) = δ
⇔

⎧
⎨

⎩

Kxf = f(
HK−1HT

)
λ = δ − Hxf

xc = K−1HT λ

Two steps are required to solve these equations. First we compute the free motion
from the explicit forces (xf = K−1f). Given xf , we perform a collision detection
that allows us to evaluate H , and therefore δ. We then solve

(
HK−1HT

)
λ =

δ − Hxf and obtain λ. Since we are dealing with unilateral constraints, not
all constraints are necessarily needed to enforce the inequality condition on x.
Redundant constraints (for which the corresponding value in λ is negative) are
then deactivated. This is the so called status method. At this point, we can
evaluate the corrective motion xc = K−1HT λ and compute the new position
x = xf + xc. However, this new configuration does not necessarily meet the
1 In the case of a static system, we have C = K−1. For a dynamic system, the previous

equations involve the acceleration ẍ, thus requiring a time integration to determine
x. Using an Euler implicit integration scheme, this leads to C =

�
M

Δt2
+ D

Δt
+ K

�−1
.
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initial constraints since we use a linear approximation of the local shape at the
point of contact. As a consequence, an iterative scheme is introduced, during
which a collision detection is performed on the new configuration x to check if
some contacts are still violated (lines 18 to 22 in the algorithm below). If it is the
case, a new evaluation of H is performed, and a new value of xc is computed.
This is repeated until all current contacts are solved, and in most cases, less than
10 iterations and required. Since K−1 does not need to be recomputed, if the
collision detection is handled efficiently (see section 2.3), these iterations lead
to a limited overhead. At this point, all contacts initially detected are solved.
However, when solving these contacts, it is likely that new ones will appear. This
is typical of any collision response algorithm. In our case we solve all contacts
within a given time step, rather than the next time step. This explains the main
loop (lines 7 to 22) in the algorithm below. Checking for new contacts within the
same time step adds a computational overhead but ensures a more consistent
(and contact free) configuration at the beginning of the following time step.

Solve Kxf = f1

contact = () , done = true2

for i← 1 to n do3

if DetectCollision(Pi(x
f )) then4

contact+ = (Hi , δi)5

done = false6

while !done do7

repeat8

Solve
�
HK−1HT

�
.λ = δ −Hxf

9

// I) Constraints deactivation using status method10

done = true11

if ∃ i | (λi < 0) then12

Remove from contact : contactj | (λj = min(λi))13

done = false14

until done ;15

xc =
�
K−1HT

�
λ16

// II) Constraints activation17

done = true18

for i← 1 to n do19

if DetectCollision(Pi(x
f + xc) ) then20

contact+ = (Hi , δi)21

done = false22

Equivalence with the Mechanics of Contacts. One can note that HK−1HT

represents the contacts coupling, which is exactly the meaning of the Delassus
operator defined in section (2.1) with K−1 ≡ C the compliance matrix of the
mechanical system. Moreover, the Lagrange multipliers λ give the force in the
contact space, which is equivalent to fn

P in the Delassus operator approach. This
means the corrective motion computed using Lagrange multipliers is identical to
the one derived from the Delassus operator, i.e. xc = K−1HT λ = CHT fn

P . The
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equivalence between Signorini’s law / Delassus operator and our approach based
on Lagrange multipliers / status method is very important as it shows that the
contacts are modeled accurately with our approach.

2.3 Collision Detection

Implicit Surface Modeling. For organic shapes (i.e. shapes that do not ex-
hibit sharp features) a fast collision detection can be performed by using an im-
plicit description of the surface, rather than a triangulation. The surface is then
described using a combination of geometrical primitives and a convolution filter.
The primitives can be either points, segments, triangles or other simple shapes.
The convolution filter h is defined as a function from R

3 −→ R
+ with a finite

support or fast decay to 0 and the resulting surface is f(P ) = h(P ) ⊗ s = iso,
where iso is an isosurface value and f(P ), with the potential at P a point in R

3.
In addition, pathologies such as tumors or aneurysms can be modeled by locally
modifying the potential field.

Collision Detection. Given a function g defined as g = f − iso and a point P
at two different time steps t and t + 1, the collision detection consists in finding
where [Pt, Pt+1] intersects the surface f . This is equivalent to finding the first
root i0 of g on the interval [Pt, Pt+1]. This is achieved using a modified version
of the Newton-Raphson algorithm. From i0 and −∇g(i0) the surface gradient at
i0, we can compute a linear approximation of the surface. This approximation
defines the tangent plane −∇g(i0) × P = ‖i0‖ at i0 which parameters are used
by our contact algorithm. Since this tangent plane is only a valid approximation
of the surface around i0, the correction xc might not be on the actual surface
(see section 2.2). Therefore we need to update the tangent plane based on the
corrected position x = xf +xc. This is done by estimating the gradient ∇g at x,
which provides the direction to reach the surface with a minimal distance. This
gives us a new point ik = x + ν∇g, where ν is a scalar value. This new point
and its normal are used as an updated linear approximation of the surface.

From a mathematical point of view, such updates of the contact point and its
normal is close to the secant method algorithm (because the gradient is evaluated
using finite differences) to find the root of a function. Indeed, in convex cases, the
distance between xc and the surface decreases through the successive iterations
and finally lead to a point of the surface. Such method is proved to converge
in convex cases and we use a dedicated strategy to solve the concave cases (see
Section ).

3 Results

We have applied our method to a complex simulation: the navigation of a
catheter and guidewire inside a reconstructed vascular network to perform a
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Fig. 1. Simulation of catheter and guidewire navigation from the aorta to the common
carotid artery (left). Simulation of coil deployment inside an aneurysm (right). Contact
locations and the corresponding contact planes (in white) are shown.

virtual angiography and the deployment of a coil inside an aneurysm to perform
an embolization. The catheter, guidewire and coil models consist of a series of
non-linear deformable beam elements. Each device is composed from 100 to 200
beam elements while the vascular network is constituted of more than 4, 000
vessels and undergoes periodic deformations due to both cardiac and respira-
tory motions. When entering the cerebrovascular system, where the diameter of
the vessels is very small, the catheter or guidewire are constantly colliding and
sliding along the vessels wall (see Figure 1). Similarly, when deployed within
an aneurysm, the coil becomes highly constrained, and proper contact model-
ing becomes of prime importance to guarantee a correct behavior during the
simulation (see Figure 1).

We have performed a series of simulations on a Dual Core processor machine
with 2 GB of memory and obtained real-time computation rates (25 Hz). These
timings include the computation and inversion of the system stiffness matrix K
at each time step, as well as collision detection and collision response. Since the
contacts are solved in the contact space, the size of the system is the number
c of contact (defining n as the number of DOFs, c ≤ n and usually c � n).
It is also important to mention that, in order to enforce the convergence and
stability of the contact algorithm, we use a subdivision strategy where each time
step is subdivided into a variable number of sub-steps. The initial time step is
subdivided if not all contacts have been solved after N iterations of the main loop
of the algorithm (see section 2.2). This subdivision strategy allows us to solve
complex contact configurations and to handle concave cases has a succession of
convex cases.
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4 Conclusion

In this paper we have proposed an efficient method for solving complex contacts
between various types of physics-based objects, in particular deformable struc-
tures. The proposed algorithm is accurate since the exact forces required to solve
the contacts are computed and coupling between contacts is taken into account.
Computational efficiency is achieved by solving contacts in the contact space to
reduce the size of the system of equations. The approach uses an iterative scheme
to solve all contacts at each time step and a subdivision strategy insures the ro-
bustness of the algorithm even in the case of complex contact configurations.
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