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Abstract. In this paper we study several routing problems that gener-
alize shortest paths and the Traveling Salesman Problem. We consider
a more general model that incorporates the actual cost in terms of gas
prices. We have a vehicle with a given tank capacity. We assume that
at each vertex gas may be purchased at a certain price. The objective
is to find the cheapest route to go from s to t, or the cheapest tour
visiting a given set of locations. Surprisingly, the problem of find the
cheapest way to go from s to t can be solved in polynomial time and
is not NP-complete. For most other versions however, the problem is
NP-complete and we develop polynomial time approximation algorithms
for these versions.

1 Introduction

Optimization problems related to computing the shortest (or cheapest) tour
visiting a set of locations, or that of computing the shortest path between a
pair of locations are pervasive in Computer Science and Operations Research.
Typically, the measures that we optimize are in terms of “distance” traveled,
or time spent (or in some cases, a combination of the two). There are literally
thousands of papers dealing with problems related to shortest-path and tour
problems.

In this paper, we consider a more general model that incorporates the actual
cost in terms of gas prices. We have a vehicle with a given tank capacity of U .
In fact, we will assume that U is the distance the vehicle may travel on a full
tank of gas (this can easily be obtained by taking the product of the tank size
and the mileage per gas unit of the vehicle). Moreover, we may assume that we
start with some given amount of gas μ (≤ U) in the tank. We assume that at
each vertex v gas may be purchased at a price of c(v). This price is the cost of
gas per mile. For example if gas costs $3.40 per gallon and the vehicle can travel
for 17 miles per gallon, then the cost per mile is 20 cents.

At each gas station we may fill up some amount of gas to “extend” the range
of the vehicle by a certain amount. Moreover, since gas prices vary, the cost
depends on where we purchase gas from.
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In addition to fluctuating gas prices, there is significant variance in the price
of gas between gas stations in different areas. For example, in the Washington
DC area alone, the variance in gas prices between gas stations in different areas
(on the same day) can be by as much as 20%. Due to different state taxes, gas
prices in adjacent states also vary. Finally, one may ask: why do we expect such
information to be available? In fact, there are a collection of web sites [1,2] that
currently list gas prices in an area specified by zip code. So it is reasonable to
assume that information about gas prices is available. What we are interested in
are algorithms that will let us compute solutions to some basic problems, given
this information.

In this general framework, we are interested in a collection of basic questions.

1. (The gas station problem) Given a start node s and a target node t, how
do we go from s to t in the cheapest possible way if we start at s with μs

amount of gas? In addition we consider the variation in which we are willing
to stop to get gas at most Δ times1. Another generalization we study is
the sequence gas station problem. Here, we want to find the cheapest route
that visits a set of p locations in a specified order (for example by a delivery
vehicle).

2. (The fixed-path gas station problem) An interesting special case is when
we fix the path along which we would like to travel. Our goal is to find an
optimal set of refill stops along the path.

3. (The uniform cost tour gas station problem) Given a collection of cities T ,
and a set of gas stations S at which we are willing to purchase gas, find
the shortest tour that visits T . We have to ensure that we never run out of
gas. Clearly this problem generalizes the Traveling Salesman Problem. The
problem gets more interesting when S �= T , and we address this case. This
models the situation when a large transportation company has a deal with a
certain gas company, and their vehicles may fill up gas at any station of this
company at a pre-negotiated price. Here we assume that gas prices are the
same at each gas station. This could also model a situation where some gas
stations with very high prices are simply dropped from consideration, and
the set S is simply the set of gas stations that we are willing to use.

4. (The tour gas station problem) This is the same as the previous problem,
except that the prices at different stations can vary.

Of all the above problems, only the tour problems are NP -hard. For the
first two we develop polynomial time algorithms, and for the tour problems we
develop approximation algorithms.

We now give a short summary of the results in the paper:

1. (The gas station problem) For the basic gas station problem, our algorithm
runs in time O(Δn2 log n) and computes an optimal solution. If we want

1 This restriction makes sense, because in some situations where the gas prices are
decreasing as we approach our destination, the cheapest solution may involve an
arbitrarily large number of stops, since we only fill up enough gas to make it to a
cheaper station further down the path.
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to visit a sequence of p cities we can find an optimal solution in time
O(Δ(np)2 log(np)). In addition, we develop a second algorithm for the all-
pairs version that runs in time O(n3Δ2). This method is better than repeat-
ing the fixed-destination algorithm n times when Δ < log n.

2. (The fixed-path gas station problem) For the fixed-path version with an
unbounded number of stops, we develop a fast O(n log n) time algorithm.
Due to space constraints this is described in the full version of the paper.

3. (The uniform cost tour gas station problem) Since this problem is NP -hard,
we focus on polynomial time approximation algorithms. We assume that
every city has a gas station within a distance of αU

2 for some α < 1. This
assumption is reasonable since in any case, every city has to have a gas station
within distance U

2 , otherwise there is no way to visit it. A similar assumption
is made in the work on distance constrained vehicle routing problem [13].
We develop an approximation algorithm with an approximation factor of
3
2 (1+α

1−α ). We also consider a special case, namely when there is only one
gas station. This is the same as having a central depot, and requiring the
vehicle to return to the depot after traveling a maximum distance of U .
For this special case, we develop an algorithm with factor O(ln 1

1−α ) and
this improves the bound of 3

2(1−α) given by Li et al. [13] for the distance
constrained vehicle routing problem.

4. (The tour gas station problem) For the tour problem with arbitrary prices,
we can use the following scheme: sort all the gas prices in non-decreasing
order c1 ≤ c2 ≤ . . . cn. Now guess a range of prices [ci . . . cj ] one is willing
to pay, and let βij = cj

ci
. Let Sij include all the gas stations v such that

ci ≤ c(v) ≤ cj . We can run the algorithm for the uniform cost tour gas
station problem with set Sij and cities T . This will yield a tour T [i,j]. We
observe that the cost of the tour T [i,j] is at most O( βij

1−α ) times the cost of
an optimal solution, since its possible that we always pay a factor βij more
than the optimal solution, at each station where we fill gas. Taking the best
solution over all O(n2) possible choices gives a valid solution to the tour gas
station problem.

1.1 Related Work

The problems of computing shortest paths and the shortest TSP tour are clearly
the most relevant ones here and are widely studied, and discussed in several
books [12,17].

One closely related problem is the Orienteering problem [4,5,10,7]. In this
problem the goal is to compute a path of a fixed length L that visits as many
locations as possible, starting from a specified vertex. For this problem, a factor
3 approximation has been given recently by Bansal et al. [6]. (In fact, they can
fix the starting and ending vertices.) This algorithm is used as subroutine for
developing a bicriteria bound for Deadline TSP. By using the 3 approximation
for the Orienteering problem, we develop an O(log |T |) approximation for the
single gas station tour problem. This is not surprising, since we would like to
cover all the locations by finding walks of length at most U .
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There has been some recent work by Nagarajan and Ravi [16] on minimum
vehicle routing that is closely related to the single gas station tour problem. In
this problem, a designated root vertex (depot) and a deadline D are given and
the goal is to use the minimum number of vehicles from the root so that each
location is met by at least one of the vehicles, and each vehicle traverses length
at most D. (In their definition, vehicles do not have to go back to the root.)
They give a 4-approximation for the case where locations are in a tree and an
O(log D) approximation for graphs with integer weights.

Another closely related piece of work is by Arkin et al. [3] where tree and tour
covers of bounded length are computed. What makes their problem easier is that
there is no specified root node, or a set of gas stations one of which should be
included in any bounded length tree or tour. Several pieces of work deal with
vehicle routing problems [14,15,9] with multiple vehicles, where the objective is
to bound the total cost of the solution, or to minimize the longest tour. However
these problems are significantly easier to develop approximation algorithms for.

2 The Gas Station Problem

The input to our problem consists of a complete graph G = (V, E) with edge
lengths d : E → R+, gas costs c : V → R+ and a tank capacity U . (Equivalently,
if we are not given a complete graph we can define duv to be the distance between
u and v in G.) Our goal is to go from a source s to a destination t in the
cheapest possible way using at most Δ stops to fill gas. For ease of exposition we
concentrate on the case where we start from s with an empty tank. The case in
which we start with μs units of gas can be reduced to the former as follows. Add
a new node s′ such that ds′s = U − μs and c(s′) = 0. The problem of starting
from s with μs units of gas and that of starting from s′ with an empty tank
using one additional stop are equivalent.

We would also like to note that our strategy yields a solution where the gas
tank will be empty when one reaches a location where gas can be filled cheaply.
In practice, this is not safe and one might run out of gas (for example if one gets
stuck in traffic). For that reason we suggest defining U to be smaller than the
actual tank capacity so that we always have some “reserve” capacity.

In this section we develop an O(Δn2 log n) time algorithm for the gas station
problem. In addition, when Δ = n we show how to solve the problem in O(n3)
time for general graphs, and O(n log n) time for the case where G is a fixed path.

One interesting generalization of the problem is the sequence gas station prob-
lem where we are given a sequence s1, s2, . . . , sp of vertices that we must visit
in the specified order. This variant can be reduced to the s-t version in an ap-
propriately defined graph.

2.1 The Gas Station Problem Using Δ Stops

We will solve the gas station problem using the following dynamic program (DP)
formulation:

A(u, q, g) = Minimum cost of going from u to t using q refill stops, starting
with g units of gas. We consider u to be one of the q stops.
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The main difficulty in dealing with the problem stems from the fact that, in
principle, we need to consider every value of g ∈ [0, U ]. One way to avoid this
is to discretize the values g can take. Unfortunately this only yields a pseudo-
polynomial time algorithm. To get around this we need to take a closer look at
the structure of the optimal solution.

Lemma 1. Let s = u1, u2, . . . , ul be the refill stops of an optimal solution using
at most Δ stops. The following is an optimal strategy for deciding how much gas
to fill at each stop: At ul fill just enough to reach t with an empty tank; for j < l

i) If c(uj) < c(uj+1) then at uj fill up the tank.
ii) If c(uj) ≥ c(uj+1) then at uj fill just enough gas to reach uj+1.

Proof. If c(uj) < c(uj+1) and the optimal solution does not fill up at uj then we
can increase the amount filled at uj and decrease the amount filled at uj+1. This
improves the cost of the solution, which contradicts the optimality assumption.
Similarly, if c(uj) ≥ c(uj+1) then we can decrease the amount filled at uj and
increase the amount filled at uj+1 (without increasing the overall cost of the
solution) until the condition is met. ��

Consider a refill stop u �= s in the optimal solution. Let w be the stop right
before u. Lemma 1 implies that if c(w) > c(u), we reach u with an empty tank,
otherwise we reach u with U − dwu gas. Therefore, in our DP formulation we
need to keep track of at most n different values of gas for u. Let GV (u) be the
set of such values, namely

GV (u) = {U − dwu | w ∈ V and c(w) < c(u) and dwu ≤ U} ∪ {0}

The following recurrence allows us to compute A(u, q, g) for any g ∈ GV (u):

A(u, 1, g) =
{

(dut − g) c(u) if g ≤ dut ≤ U
∞ otherwise

A(u, q, g) = min
v s.t.

duv≤U

{
A(v, q−1, 0) + (duv − g) c(u) | c(v) ≤ c(u) ∧ g ≤ duv

A(v, q−1, U − duv) + (U − g) c(u) | c(v) > c(u)

}

The cost of the optimal solution is min1≤l≤Δ A(s, l, 0). The naive way of filling
the table takes O(Δn3) time. However, this can be done more efficiently.

Theorem 1. There is an O(Δn2 log n) time algorithm for the gas station prob-
lem with Δ stops.

Instead of spending O(n) time computing a single entry of the table, we spend
O(log n) amortized time per entry. More precisely, for fixed u ∈ V and 1 < q ≤ Δ
we show how to compute all entries of the form A(u, q, ∗) in O(n log n) time using
entries of the form A(∗, q−1, ∗). Theorem 1 follows immediately.

The DP recursion for A(u, q, g) finds the minimum, over all v such that duv ≤
U , of terms that corresponds to the cost of going from u to t through v. Split
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each of these terms into two parts based on whether they depend on g or not.
Thus we have an independent part, which is either A(v, q − 1, 0) + duv c(u) or
A(v, q − 1, U − duv) + Uc(u); and a dependent part, −g c(u).

Our procedure begins by sorting the independent part of every term. Note
that the minimum of these corresponds to the entry for g = 0. As we increase g,
the terms decrease uniformly. Thus, to compute the table entry for g > 0 just
subtract g c(u) from the smallest independent part available. The only caveat is
that the term corresponding to a vertex v such that c(v) ≤ c(u) should not be
considered any more once g > duv, we say such a term expires after g > duv. Since
the independent terms are sorted, once the smallest independent term expires we
can walk down the sorted list to find the next vertex which has not yet expired.
The procedure is dominated by the time spent sorting the independent terms
which takes O(n log n) time.

Theorem 2. When Δ = n the problem can be solved in O(n3) time.

We can reduce the problem to a shortest path question on a new graph H . The
vertices of H are pairs (u, g), where u ∈ V and g ∈ GV (u). The edges of H and
their weight w(·) are defined by the DP recurrence. Namely, for every u, v ∈ V
and g ∈ GV (u) such that duv ≤ U we have w

(
(u, q), (v, 0)

)
= (duv −g) c(u) if

c(v) ≤ c(u) and g ≤ duv, or w
(
(u, q), (v, U −duv

)
= (U −g) c(u) if c(v) > c(u).

Our objective is to find a shortest path from (s, 0) to (t, 0). Note that H has
at most n2 vertices and at most n3 edges. Using Dijkstra’s algorithm [8] the
theorem follows.

2.2 Faster Algorithm for the All-Pairs Version

Consider the case in which we wish to solve the problem for all starting nodes
i, with μi amount of gas in the tank initially. Using the method described in
the previous section, we get a running time of O(n3Δ log n) since we run the
algorithm for each possible destination. We will show that for Δ < log n we can
improve this and get a bound of O(n3Δ2).

Add new nodes i′ such that di′i = U − μi and c(i′) = 0. If we start at i with
μi units of gas, it is the same as starting from i′ where gas is free. We fill up
the tank to capacity U , and then by the time we reach i we will have exactly μi

units of gas in the tank. (Since gas is free at any node i′ in any optimal solution
we fill up the tank to capacity U). This will use one extra stop.

We define B(i, h, p) as the minimum cost solution to go from i to h (destina-
tion), with p stops to get gas, given that we start with an empty tank at i. Since
we start with an empty tank, we have to fill up gas at the starting point (and
this is included as one of the stops). Clearly, we will also reach h (destination)
with an empty tank, assuming that there is no trivial solution, such as one that
arrives at the destination with no fill-ups on the way.

Our goal is to compute B(i′, h, Δ+1) which is a minimum cost solution to go
from i′ to h with at most Δ stops in-between. Note that the first fill-up is the
one that takes place at node i′, after that we stop at most Δ times.
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We will now show how to compute B(i, h, p). There are two options:

– If the gas price at the first stop after i (e.g. k) is cheaper than c(i) then we
will reach that station with an empty tank after filling dik units of gas at i
(as long as dik ≤ U):

B(i, h, p) = B(k, h, p − 1) + dikc(i)

– If the first place where the cost of gas decreases from the previous stop is
the q + 1st stop and the price is in increasing order in the first q stops then

B(i, h, p) = C(i, k, q) + B(k, h, p − q)

We define C(i, k, q) as the minimum cost way of going from i to k with at
most q stops to get gas, such that we start at i with an empty tank (and get
gas at i, which counts as a stop) and finally reach k with an empty tank.
In addition, the price of gas in intermediate stations is in increasing order
except for the last stop.

We define B(h, h, p) = 0. For i �= h let B(i, h, 1) = c(i) dih if dih ≤ U , and
B(i, h, 1) = ∞ otherwise. In general:

B(i, h, p) = min

{
min

1≤k≤n
1<q≤p

C(i, k, q) + B(k, h, p−q), min
1≤k≤n

s.t.dik≤U

B(k, h, p−1) + dik c(i)

}

If we are able to compute C(i, k, q) efficiently then B(i, h, p) can be computed.
There are n2Δ states in the dynamic program, and each one can be computed in
time O(nΔ). This yields a running time of O(n3Δ2). We will see that the time
required to compute C(i, k, q) is O(n3Δ) for all relevant choices of i, k, q.

Suppose that in going from i to k we stop at i1 = i, . . . , iq, iq+1 = k . Note
that c(i1) ≤ c(i2) ≤ . . . ≤ c(iq), however c(iq) > c(iq+1). In fact, at i1 we will
get U amount of gas. When we reach ij for 1 < j < q, we will get dij−1ij units
of gas (the amount that we consumed since the previous fill-up) at a cost of
c(ij) per unit of gas. The amount of gas we will get at iq is just enough to
reach k with an empty tank. Now we can see that the total cost is equal to
Uc(i1) + di1i2c(i2) + . . . + diq−2iq−1c(iq−1) + (diq−1iq + diqk − U)c(iq). Note that
the last term is not negative, since we could not reach k from iq−1 even with a
full tank at iq−1, without stopping to get a small amount of gas.

We compute C(i, k, q) as follows. First note that if dik ≤ U then the answer
is dikc(i). Otherwise we build a directed graph G′ = (V ∪ VD, E ∪ ED), where
V is the set of vertices, and VD = {i′|i ∈ V }.

We define E: add a directed edge from i ∈ V to j for each vertex j ∈ V \ {i}
such that dij ≤ U and c(i) ≤ c(j). The weight of this edge is dijc(j).

We define ED as follows: add a directed edge from each j ∈ V to k′ for each
vertex k′ ∈ VD \ {j′} such that U < djk ≤ 2U . The weight of this edge is

min
{
(djz + dzk − U)c(z) | c(j), c(k) < c(z) and djz , dzk ≤ U

}
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Now we can express C(i, k, q) as Sp(i, k′, q) + Uc(i) where Sp(i, k′, q) is the
shortest path from i to k′ in the graph G′ using at most q edges.

To see why it is true, we can see that for any given order of stops between
i and k (where the gas price is in increasing order in consecutive stops), the
minimum cost is equal to the weight of the path in G′ that starts from i, goes
to the second stop in the given order (e.g., i2) and then traverses the vertices of
V in the same order and from the second last stop goes to k′. It is also possible
that q = 2 and the path goes directly from i = i1 to k in this case, and i2 is the
choice for z that achieves the minimum cost for the edge (i, k′).

For any given path P in G′ between i and k′, if the weight of the path is WP

we can find a feasible plan for filling the tank at the stations so that the cost
is equal to WP + Uc(i). It is enough to fill up the tank at the stations that are
in the path, except the last one in which the tank is filled to only the required
level to reach k. We can conclude that C(i, k, q) is equal to Sp(i, k′, q) + Uc(i).

The running time for finding the shortest path between all pairs of nodes with
different number of stops (at most Δ) can be computed in O(n3Δ) by dynamic
programming [11]. If we precompute C(i, k, q) the running time for computing
B(i′, h, Δ + 1) is O(n3Δ2) assuming we start at i with μi amount of gas. So in
general the running time is O(n3Δ2).

3 The Uniform Cost Tour Gas Station Problem

In this section we study a variant of the gas station problem where we must visit
a set of cities T in arbitrary order. We consider the case where gas costs the
same at every gas station, but some cities may not have a gas station.

More formally, the input to our problem consists of a complete undirected
graph G = (V, E) with edge lengths d : E → R+, a set of cities T ⊆ V , a set of
gas stations S ⊆ V , and tank capacity U for our vehicle. The objective is to find
a minimum length tour that visits all cities in T , and possibly some gas stations
in S. We are allowed to visit a location multiple times if necessary. We require
any segment of the tour of length U to contain at least one gas station, this
ensures we never run out of gas. We call this the uniform cost tour gas station
problem. We assume that we start with an empty tank at a gas-station.

The problem is NP -hard as it generalizes the well-known traveling salesman
problem: just set the tank capacity to the largest distance between any two cities
and let T = S. In fact, there is a closer connection between the two problems: If
every city has a gas station, i.e., T ⊆ S, we can reduce the gas station problem
to the TSP. Consider a TSP instance on T under metric � : T × T → R+, where
�xy is the minimum cost of going between cities x and y starting with an empty
tank (this can be computed by standard techniques). Since the cost of gas is the
same everywhere, a TSP tour can be turned into a driving plan that visits all
cities with the same cost and vice-versa. Let OPT denote an optimal solution,
and c(OPT ) its cost.

As mentioned earlier, we can use the algorithm for the uniform cost case to
derive an approximation algorithm for the general case by paying a factor β
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in the approximation ratio. Here β is the ratio of the maximum price that an
optimal solution pays for buying a unit of gas, to the minimum price it pays for
buying a unit of gas (in practice this ranges from 1 to 1.2).

Unfortunately this reduction to the TSP breaks down when cities are not
guaranteed to have a gas station. Consider going from x to y, where x does not
have a gas station. The distance between x and y will depend on how much gas
we have at x, which in turn depends on which city was visited before x and what
route we took to get there.

An interesting case of the tour gas station problem is that of an instance with
a single gas station. This is also known as the distance constrained vehicle rout-
ing problem and was studied by Li et al. [13] who gave a 3

2(1−α) approximation
algorithm, where the distance from the gas station to the most distant city is
αU

2 , for some α < 1. We improve this by providing an O(log 1
1−α ) approxima-

tion algorithm Without making any assumptions on α we show that a greedy
algorithm that finds bounded length tours visiting the most cities at a time is
a O(log |T |)-factor approximation. The proof of these claims appear in the full
version of this paper.

For the general case we make the assumption that every city has a gas station
at distance at most αU

2 . This assumption is reasonable, because if a city has
no gas station within distance U

2 , there is no way to visit it. We show a 3(1+α)
2(1−α)

approximation for this problem. Note that when α = 0, this gives the same
bound as the Christofides method for the TSP.

3.1 The Tour Gas Station Problem

For each city x ∈ T let g(x) ∈ S be the closest gas station to x, and let dx be the
distance from x to g(x). We assume that every city has a gas station at distance
at most αU

2 ; in order words, dx ≤ αU
2 for all x ∈ T .

Recall that it is assumed that the price of the gas is the same at all the gas
stations. We define a new distance function for the distance between each pair of
cities. The distance � is defined as follows: For each pair of cities x and y, �xy is
the length of the shortest traversal to go from x to y starting with U −dx amount
of gas and reaching y with dy amount of gas. If dxy ≤ U −dx −dy then we can go
directly from x to y, and �xy = dxy. Otherwise, we can compute this as follows.
Create a graph whose vertex set is S, the set of gas stations. To this graph add x
and y. We now add edges from x to all gas stations within distance U − dx from
x. Similarly we add edges from y to all gas stations within distance U − dy to
y. Between all pairs of gas stations, we add an edge if the distance between the
pair of gas stations is at most U . All edges have length equal to the distance
between their end points. The length of the shortest path in this graph from x to
y will be �xy. Note that the shortest path (in general) will start at x and then go
through a series of gas stations before reaching y. This path yields a valid plan
to drive from x to y without running out of gas, once we reach x with U − dx

units of gas. When we reach y, we have enough gas to go to gy. Also note that
�xy = �yx since the path is essentially “reversible”.



To Fill or Not to Fill: The Gas Station Problem 543

gas station

indirect edge

refill trip

direct edge

city

x0
i xk

i

. . .

x1
i x2

i x3
i x4

i xk+1
i

Fig. 1. Decomposition of the solution into strands

We assume here that all distances are Euclidean. Note that from x, we can
only go to B and not A since we start from x with U − dx units of gas. From B,
we cannot go to D since the distance between B and D is more than U , even
though the path through D to y would be shorter. From C we go to E since
going through F will give a longer path, since from F we cannot go to y directly.

Note that the function � may not satisfy triangle inequality. To see this, sup-
pose we have three cities x, y, z. Let dxy = dyz = U

2 . Let dx = dy = dz = U
4 and

dxz = U . We first observe that �xy = �yz = U
2 . However, if we compute �xz, we

cannot go from x to z directly since we only have 3
4U units of gas when we start

at x and need to reach z with U
4 units of gas. So we have to visit gy along the

way, and thus �xz = 3
2U .

The algorithm is as follows:

1. Create a new graph G′, with a vertex for each city. For each pair of cities
x, y compute �xy as shown earlier.

2. Find the minimum spanning tree in (G′, �). Also find a minimum weight
perfect matching M on the odd degree vertices in the MST. Combine the
MST and M to find an Euler tour T .

3. Start traversing the Eulerian tour. Add refill trips whenever needed. (Details
on this follow).

It can be shown that the total length of the MST is less than the optimal
solution cost. Suppose x1, . . . , xn is the order in which the optimal solution
visits the cities. Clearly, the cost of going from xi to xi+1 in the optimal solution
is at least �xixi+1 . Since the collection of edges (xi, xi+1) forms a spanning tree,
we can be conclude that the weight of the �(MST) ≤ c(OPT ). Next we show
that the cost of M is at most c(OPT )

2 . Suppose the odd degree vertices are in
the optimal solution in the order o1, . . . , ok. We can see that �oioi+1 is at most
equal to the distance we travel in the optimal solution to go from oi to oi+1. So
the cost of minimum weighted matching on the odd degree vertices is at most
c(OPT )

2 . So the total cost of the Eulerian tour T is at most 3c(OPT )
2 .

Now we need to transform the Eulerian tour into a feasible plan. First, every
edge (x, y) in T is replaced with the actual plan to drive from x to y that we
found when computing �xy. If dxy ≤ U −dx −dy the plan is simply to go straight
from x to y, we call these direct edges. Otherwise the plan must involve stopping
along the way in one or more gas stations, we call these indirect edges. Notice
that the cost of this plan is exactly that of the Eulerian tour T . Unfortunately,
as we will see below this plan need not be feasible.
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Define a strand, to be a sequence of consecutive cities in the tour connected
by direct edges. If a city is connected with two indirect edges, then it forms a
strand by itself. Suppose the ith strand has cities x1

i , . . . , x
k
i . To this we add x0

i

(xk+1
i ), the last (first) gas station in the indirect edge connecting x1

i (xk
i ) with

the rest of the tour. Each strand now starts and ends with a gas station. We can
view the tour as a decomposition into strands as shown in Fig. 1. Note that if the
distance between x0

i and xk+1
i is more than U the overall plan is not feasible. To

fix we add for every city a refill trip to its closest gas station and then greedily
try to remove them, while maintaining feasibility, until we get a minimal set of
refill trips. Let us bound the extra cost these trips incur.

Lemma 2. Let Li be the length of the ith strand. Then the total distance traveled
on the refill trips of cities in the strand is at most 2α

1−αLi.

Proof. Assume there are qi refill trips in this strand. Label the cities with refill
trips to their nearest gas stations xj1

i , . . . , x
jqi

i . Also label x0
i as xj0

i and xk
i as

x
jqi+1

i . Note that �(T (xjp

i , x
jp+2
i )) ≥ (1 − α)U (otherwise the refill trip at x

jp+1
i

can be dropped). This gives us:

2Li >
∑

0≤p≤qi−1

�(T (xjp

i , x
jp+2
i )) ≥ qi(1 − α)U =⇒ qi ≤ 2Li

(1 − α)U

The length of each refill trip no more than αU . Therefore, the total length of
the refill trips is at most αUqi, and the lemma follows. ��

The cost of the solution is the total length of the strands (which is the length
of the tour) plus the total cost of the refill trips. (Note that without loss of
generality we can assume that our tour always starts from a gas station. For the
case with only direct edges, there is exactly one strand, starting and ending at
the first city with the gas station).

In other words, the total cost of the solution is:

�(T ) +
∑

i

αUqi ≤
(

1 +
2α

1 − α

)
�(T ) ≤

(
1 + α

1 − α

)
3
2

c(OPT).

Theorem 3. There is a 3 (1+α)
2 (1−α) -approximation for the tour gas station problem.

4 Conclusion

Current problems of interest are to explore improvements in the approximation
factors for the special cases of Euclidean metrics, and planar graphs. In addi-
tion we would also like to develop faster algorithms for the single source and
destination case, perhaps at the cost of sacrificing optimality of the solution.
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