Skip to main content

Learning Single Rules

  • Chapter
  • First Online:
Foundations of Rule Learning

Part of the book series: Cognitive Technologies ((COGTECH))

  • 2127 Accesses

Abstract

This chapter describes algorithms and strategies for constructing single rules in the concept learning framework. The starting point in Sect. 6.2 is a generic algorithm for finding the best rule which searches the hypothesis space for a rule that optimizes some quality criterion. Section 6.3 presents alternative search algorithms (heuristic search algorithms including hill-climbing and beam search, as well as exhaustive search algorithms).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The name Cigol is ‘logic’ spelled backwards.

References

  • Adé, H., De Raedt, L., & Bruynooghe, M. (1995). Declarative bias for specific-to-general ILP systems. Machine Learning, 20(1–2), 119–154. Special Issue on Bias Evaluation and Selection.

    Google Scholar 

  • Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., & Verkamo, A. I. (1995). Fast discovery of association rules. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, & R. Uthurusamy (Eds.), Advances in knowledge discovery and data mining (pp. 307–328). Menlo Park, CA: AAAI.

    Google Scholar 

  • Bayardo, R. J., Jr. (1997). Brute-force mining of high-confidence classification rules. In Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining (KDD-97) (pp. 123–126). Menlo Park, CA: AAAI.

    Google Scholar 

  • Bergadano, F., Giordana, A., & Saitta, L. (1988). Automated concept acquisition in noisy environments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10, 555–578.

    Article  Google Scholar 

  • Botta, M., Giordana, A., & Saitta, L. (1992). Comparison of search strategies in learning relations. In B. Neumann (Ed.), Proceedings of the 10th European Conference on Artificial Intelligence (ECAI-92), Vienna (pp. 451–455). Chichester, UK/New York: Wiley.

    Google Scholar 

  • Clark, P., & Niblett, T. (1989). The CN2 induction algorithm. Machine Learning, 3(4), 261–283.

    Google Scholar 

  • De Raedt, L. (1992). Interactive theory revision: An inductive logic programming approach. London/San Diego, CA/Sydney, NSW: Academic.

    Google Scholar 

  • De Raedt, L. (2008). Logical and relational learning. Berlin, Germany: Springer.

    Book  MATH  Google Scholar 

  • Džeroski, S., & Bratko, I. (1992). Handling noise in inductive logic programming. In S. H. Muggleton & K. Furukawa (Eds.), Proceedings of the 2nd International Workshop on Inductive Logic Programming (ILP-92) (pp. 109–125). No. TM-1182 in ICOT Technical Memorandum, Institute for New Generation Computer Technology, Tokyo, Japan.

    Google Scholar 

  • Džeroski, S., & Lavrač, N. (Eds.). (2001). Relational data mining: Inductive logic programming for knowledge discovery in databases. Berlin, Germany/New York: Springer.

    MATH  Google Scholar 

  • Džeroski, S., Schulze-Kremer, S., Heidtke, K. R., Siems, K., Wettschereck, D., & Blockeel, H. (1998). Diterpene structure elucidation from 13CNMR spectra with inductive logic programming. Applied Artificial Intelligence, 12(5), 363–383. Special Issue on First-Order Knowledge Discovery in Databases.

    Google Scholar 

  • Fensel, D., & Wiese, M. (1993). Refinement of rule sets with JoJo. In P. Brazdil (Ed.), Proceedings of the 6th European Conference on Machine Learning (ECML-93), Vienna (pp. 378–383). Berlin, Germany/New York: Springer.

    Google Scholar 

  • Fensel, D., & Wiese, M. (1994). From JoJo to Frog: Extending a bi-directional strategy to a more flexible three-directional search. In C. Globig & K.-D. Althoff (eds.) Beiträge zum 7. Fachgruppentreffen Maschinelles Lernen (Tech. Rep. LSA-95-01, pp. 37–44). Zentrum für Lernende Systeme und Anwendungen, University of Kaiserslautern.

    Google Scholar 

  • Fürnkranz, J. (2002a). A pathology of bottom-up hill-climbing in inductive rule learning. In N. Cesa-Bianchi, M. Numao, & R. Reischuk (Eds.), Proceedings of the 13th European Conference on Algorithmic Learning Theory (ALT-02), Lübeck, Germany (pp. 263–277). Berlin, Germany/New York: Springer.

    Google Scholar 

  • Giordana, A., & Sale, C. (1992). Learning structured concepts using genetic algorithms. In Sleeman, D., Edwards, P. (eds.) Proceedings of the 9th International Workshop on Machine Learning (ML-92), Edinburgh, UK (pp. 169–178). San Mateo, CA: Morgan Kaufmann.

    Google Scholar 

  • Goethals, B. (2005). Frequent set mining. In O. Maimon & L. Rokach (Eds.), The data mining and knowledge discovery handbook (pp. 377–397). New York: Springer.

    Chapter  Google Scholar 

  • Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning. Reading, MA: Addison-Wesley.

    MATH  Google Scholar 

  • Han, J., Pei, J., Yin, Y., & Mao, R. (2004). Mining frequent patterns without candidate generation: A frequent-pattern tree approach. Data Mining and Knowledge Discovery, 8(1), 53–87.

    Article  MathSciNet  Google Scholar 

  • Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2), 100–107.

    Article  Google Scholar 

  • Hipp, J., Güntzer, U., & Nakhaeizadeh, G. (2000). Algorithms for association rule mining – A general survey and comparison. SIGKDD Explorations, 2(1), 58–64.

    Article  Google Scholar 

  • Janssen, F., & Fürnkranz, J. (2009). A re-evaluation of the over-searching phenomenon in inductive rule learning. In H. Park, S. Parthasarathy, H. Liu, & Z. Obradovic (Eds.), Proceedings of the SIAM International Conference on Data Mining (SDM-09), Sparks, NV (pp. 329–340). Philadelphia: SIAM.

    Google Scholar 

  • Jovanoski, V., & Lavrač, N. (2001). Classification rule learning with APRIORI-C. In P. Brazdil & A. Jorge (Eds.), Proceedings of the 10th Portuguese Conference on Artificial Intelligence (EPIA 2001), Porto, Portugal (pp. 44–51). Berlin, Germany/New York: Springer.

    Google Scholar 

  • Kavšek, B., & Lavrač, N. (2006). Apriori-SD: Adapting association rule learning to subgroup discovery. Applied Artificial Intelligence, 20(7), 543–583.

    Article  Google Scholar 

  • Kirkpatrick, S., Gelatt, C., & Vecchi, M. (1983). Optimization by simulated annealing. Science, 220, 671–680.

    Article  MathSciNet  MATH  Google Scholar 

  • Kononenko, I., & Kovačič, M. (1992). Learning as optimization: Stochastic generation of multiple knowledge. In D. Sleeman & P. Edwards (Eds.), Proceedings of the 9th International Workshop on Machine Learning (ML-92) (pp. 257–262). San Mateo, CA: Morgan Kaufmann.

    Google Scholar 

  • Kovačič, M. (1991). Markovian neural networks. Biological Cybernetics, 64, 337–342.

    Article  MathSciNet  MATH  Google Scholar 

  • Kovačič, M. (1994b). Stochastic inductive logic programming. Ph.D. thesis, Department of Computer and Information Science, University of Ljubljana.

    Google Scholar 

  • Lavrač, N., & Džeroski, S. (1994a). Inductive logic programming: Techniques and applications. New York: Ellis Horwood.

    MATH  Google Scholar 

  • Liu, B., Hsu, W., & Ma, Y. (1998). Integrating classification and association rule mining. In R. Agrawal, P. Stolorz, & G. Piatetsky-Shapiro (Eds.), Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining (KDD-98) (pp. 80–86). Menlo Park, CA: AAAI.

    Google Scholar 

  • Michalski, R. S., Mozetič, I., Hong, J., & Lavrač, N. (1986). The multi-purpose incremental learning system AQ15 and its testing application to three medical domains. In Proceedings of the 5th National Conference on Artificial Intelligence (AAAI-86), Philadelphia (pp. 1041–1045). Menlo Park, CA: AAAI.

    Google Scholar 

  • Mitchell, T. M. (1982). Generalization as search. Artificial Intelligence, 18(2), 203–226.

    Article  MathSciNet  Google Scholar 

  • Mladenić, D. (1993). Combinatorial optimization in inductive concept learning. In Proceedings of the 10th International Conference on Machine Learning (ML-93), Amherst, MA (pp. 205–211). San Mateo, CA: Morgan Kaufmann.

    Google Scholar 

  • Muggleton, S. H. (1987). Structuring knowledge by asking questions. In Bratko, I., & Lavrač, N. (Eds.), Progress in machine learning (pp. 218–229). Wilmslow, England: Sigma Press.

    Google Scholar 

  • Muggleton, S. H. (1988). A strategy for constructing new predicates in first order logic. In Proceedings of the 3rd European Working Session on Learning (EWSL-88) (pp. 123–130). London: Pitman.

    Google Scholar 

  • Muggleton, S. H. (1991). Inverting the resolution principle. In J. E. Hayes, D. Michie, & E. Tyugu (Eds.), Machine intelligence 12 (pp. 93–103). Oxford, UK: Clarendon. Chap. 7

  • Muggleton, S. H. (1995). Inverse entailment and Progol. New Generation Computing, 13(3,4), 245–286. Special Issue on Inductive Logic Programming.

    Google Scholar 

  • Muggleton, S. H., & Buntine, W. L. (1988). Machine invention of first-order predicates by inverting resolution. In Proceedings of the 5th International Conference on Machine Learning (ML-88), Ann Arbor, MI (pp. 339–352). San Mateo, CA: Morgan Kaufmann

    Google Scholar 

  • Muggleton, S. H., & Feng, C. (1990). Efficient induction of logic programs. In Proceedings of the 1st Conference on Algorithmic Learning Theory, Tokyo (pp. 1–14). Tokyo: Japanese Society for Artificial Intelligence.

    Google Scholar 

  • Muggleton, S. H., Santos, J. C. A., & Tamaddoni-Nezhad, A. (2009). ProGolem: A system based on relative minimal generalisation. In L. De Raedt (Ed.), Proceedings of the 19th International Conference on Inductive Logic Programming (ILP-09), Leuven, Belgium (pp. 131–148). Springer.

    Google Scholar 

  • Peña Castillo, L., & Wrobel, S. (2004). A comparative study on methods for reducing myopia of hill-climbing search in multirelational learning. In C. E. Brodley (Ed.), Proceedings of the 21st International Conference on Machine Learning (ICML-2004), Banff, AB. New York: ACM.

    Google Scholar 

  • Plotkin, G. D. (1970). A note on inductive generalisation. In B. Meltzer & D. Michie (Eds.), Machine intelligence 5 (pp. 153–163). New York: Elsevier/North-Holland.

    Google Scholar 

  • Plotkin, G. D. (1971). A further note on inductive generalisation. In B. Meltzer & D. Michie (Eds.), Machine intelligence 6 (pp. 101–124). New York: Elsevier/North-Holland.

    Google Scholar 

  • Pompe, U., Kovačič, M., & Kononenko, I. (1993). SFOIL: Stochastic approach to inductive logic programming. In Proceedings of the 2nd Slovenian Conference on Electrical Engineering and Computer Science (ERK-93), Portorož, Slovenia (Vol. B, pp. 189–192).

    Google Scholar 

  • Quinlan, J. R. (1990). Learning logical definitions from relations. Machine Learning, 5, 239–266.

    Google Scholar 

  • Quinlan, J. R., & Cameron-Jones, R. M. (1995b). Oversearching and layered search in empirical learning. In C. Mellish (Ed.), Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI-95), Montréal, QC (pp. 1019–1024). San Mateo, CA: Morgan Kaufmann.

    Google Scholar 

  • Rivest, R. L. (1987). Learning decision lists. Machine Learning, 2, 229–246.

    MathSciNet  Google Scholar 

  • Rouveirol, C. (1992). Extensions of inversion of resolution applied to theory completion. In S. H. Muggleton (Ed.), Inductive logic programming (pp. 63–92). London: Academic.

    Google Scholar 

  • Rouveirol, C. (1994). Flattening and saturation: Two representation changes for generalization. Machine Learning, 14, 219–232. Special issue on Evaluating and Changing Representation.

    Google Scholar 

  • Rouveirol, C., & Puget, J. F. (1990). Beyond inversion of resolution. In Proceedings of the 7th International Conference on Machine Learning (ML-90), Austin, TX (pp. 122–130). San Mateo, CA: Morgan Kaufmann.

    Google Scholar 

  • Theron, H., & Cloete, I. (1996). BEXA: A covering algorithm for learning propositional concept descriptions. Machine Learning, 24, 5–40.

    Google Scholar 

  • Venturini, G. (1993). SIA: A supervised inductive algorithm with genetic search for learning attributes based concepts. In P. Brazdil (Ed.), Proceedings of the 6th European Conference on Machine Learning (ECML-93), Vienna (pp. 280–296). Berlin, Germany: Springer.

    Google Scholar 

  • Webb, G. I. (1992). Learning disjunctive class descriptions by least generalisation (Tech. Rep. TR C92/9). Geelong, VIC: Deakin University, School of Computing & Mathematics.

    Google Scholar 

  • Webb, G. I. (1993). Systematic search for categorical attribute-value data-driven machine learning. In C. Rowles, H. Liu, & N. Foo (Eds.), Proceedings of the 6th Australian Joint Conference of Artificial Intelligence (AI’93), Melbourne, VIC (pp. 342–347). Singapore: World Scientific.

    Google Scholar 

  • Webb, G. I. (1995). OPUS: An efficient admissible algorithm for unordered search. Journal of Artificial Intelligence Research, 5, 431–465.

    Google Scholar 

  • Webb, G. I. (2000). Efficient search for association rules. In Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD-2000), Boston (pp. 99–107). New York: ACM.

    Google Scholar 

  • Weiss, S. M., & Indurkhya, N. (1991). Reduced complexity rule induction. In Proceedings of the 12th International Joint Conference on Artificial Intelligence (IJCAI-91), Sydney, NSW (pp. 678–684). San Mateo, CA: Morgan Kaufmann.

    Google Scholar 

  • Widmer, G. (1993). Combining knowledge-based and instance-based learning to exploit qualitative knowledge. Informatica, 17, 371–385. Special Issue on Multistrategy Learning.

    Google Scholar 

  • Wiese, M. (1996). A bidirectional ILP algorithm. In Proceedings of the MLnet Familiarization Workshop on Data Mining with Inductive Logic Programming (ILP for KDD), Bari, Italy (pp. 61–72).

    Google Scholar 

  • Wirth, R. (1988). Learning by failure to prove. In Proceedings of the Third European Working Session on Learning, Glasgow, UK (pp. 237–251). London: Pitman.

    Google Scholar 

  • Zaki, M. J., Parthasarathy, S., Ogihara, M., & Li, W. (1997). New algorithms for fast discovery of association rules. In Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining (KDD-97), Newport, CA (pp. 283–286). Menlo Park, CA: AAAI.

    Google Scholar 

  • Zhang, C., & Zhang, S. (2002). Association rule mining: Models and algorithms. Berlin, Germany/New York: Springer.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fürnkranz, J., Gamberger, D., Lavrač, N. (2012). Learning Single Rules. In: Foundations of Rule Learning. Cognitive Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75197-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75197-7_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75196-0

  • Online ISBN: 978-3-540-75197-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics