Skip to main content

Molecular Modeling of Hydrogen Bonding Fluids: Formic Acid and Ethanol + R227ea

  • Conference paper
High Performance Computing in Science and Engineering `07
  • 1095 Accesses

Abstract

Currently, molecular modeling and simulation gains importance for the prediction of thermophysical properties of pure fluids and mixtures, both in research and industry. This is due to several reasons: Firstly, the predictive power of molecular models allows for results with technically interesting accuracies over wide range of state points and makes it superior to classical methods. Secondly, a given molecular model provides access to the full variety of thermophysical properties, such as thermal, caloric, transport or phase equilibrium data. Finally, through the advent of cheaply available powerful computing infrastructure, reasonable execution times for molecular simulations can be achieved. Molecular modeling and simulation are based on statistical thermodynamics which links the intermolecular interactions to the macroscopic thermophysical properties. This sound physical background also supports the increasing acceptance compared to phenomenological modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baldridge, K., Klamt, A.: First principles implementation of solvent effects without outlying charge error. J. Chem. Phys., 106, 6622 (1997).

    Article  Google Scholar 

  2. Berthelot, D.: Sur le Mélange des Gaz. Comptes Rendus de l’Académie des Sciences Paris, 126, 1703 (1889).

    Google Scholar 

  3. Büttner, R. and Maurer, G.: Dimerization of some organic acids in the gas phase. Ber. Bunsenges. Phys. Chem., 87, 877 (1983).

    Google Scholar 

  4. Bourasseau, E., Ungerer, P., Boutin, A., Fuchs, A.H.: Monte Carlo simulation of branched alkanes and long chain n-alkanes with anisotropic united atoms intermolecular potential. Mol. Sim., 28, 317 (2002).

    Article  Google Scholar 

  5. Chialvo, A.A., Kettler, M. and Nezbeda, I.: Effect of the Range of Interactions on the Properties of Fluids. 2. Structure and Phase Behavior of Acetonitrile, Hydrogen Fluoride, and Formic Acid. J. Phys. Chem. B, 109, 9736 (2005).

    Article  Google Scholar 

  6. DIPPR Project 801 - Full Version. Design Institute for Physical Property Data/AIChE, 2005.

    Google Scholar 

  7. Eckl, B., Huang, Y.-L., Vrabec, J. and Hasse, H.: Vapor pressure of R227ea + Ethanol at 343.17 K. Fluid Phase Equilib., submitted, (2007).

    Google Scholar 

  8. Industrial Fluid Properties Simulation Collective, http://www.ifpsc.org.

    Google Scholar 

  9. Jedlovszky, P. and Turi, L.: A New Five-Site Pair Potential for Formic Acid in Liquid Simulations. J. Phys. Chem. A, 101, 2662 (1997).

    Article  Google Scholar 

  10. Jedlovszky, P. and Turi, L.: Erratum to “A New Five-Site Pair Potential for Formic Acid in Liquid Simulations”. J. Phys. Chem. A, 103, 3796 (1999).

    Article  Google Scholar 

  11. Kao, C.-P.C., Schiller, M.: http://www.ifpsc.org/files/VLEBenchmark2006.pdf.

    Google Scholar 

  12. Lísal, M., Smith, W.R., Nezbeda, I.: Accurate vapour-liquid equilibrium calculations for complex systems using the reaction Gibbs ensemble Monte Carlo simulation method. Fluid Phase Equilib., 181, 127 (2001).

    Article  Google Scholar 

  13. Lorentz, H. A.: Über die Anwendung des Satzes vom Virial in der kinetischen Theorie der Gase. Annalen der Physik, 12, 127 (1881).

    Article  MathSciNet  Google Scholar 

  14. Mináry, P., Jedlovszky, P., Mezei, M. and Turi, L.: A Comprehensive Liquid Simulation Study of Neat Formic Acid. J. Phys. Chem. B, 104, 8287 (2000).

    Article  Google Scholar 

  15. Möller, D., Fischer, J.: Determination of an effective intermolecular potential for carbon dioxide using vapor-liquid phase equilibria from NpT+test particle simulations. Fluid Phase Equilib., 100, 35 (1994).

    Article  Google Scholar 

  16. Nagel, W.E., Jäger, W., Resch, M.: High Performance Computing in Science and Engineering ’05. Springer, Berlin (2005).

    Google Scholar 

  17. Nagel, W.E., Jäger, W., Resch, M.: High Performance Computing on Vector Systems ’06. Springer, Berlin (2006).

    Google Scholar 

  18. Plimpton, S.: Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comp. Phys., 117, 1 (1994).

    Article  Google Scholar 

  19. Robinson, D.B., Peng, D.Y. and Chung, S.Y.K.: The Development of the Peng-Robinson Equation and Its Application to Phase Equilibrium in a System Containing Methanol. Fluid Phase Equilib., 24, 25 (1985).

    Article  Google Scholar 

  20. Roszak, S., Gee, R.H., Balasubramanian, K., Fried, L.E.: New theoretical insight into the interactions and properties of formic acid: Development of a quantum-based pair potential for formic acid. J. Chem. Phys., 123, 144702 (2005).

    Article  Google Scholar 

  21. Schmidt, M.W., Baldridge, M.W., Boatz, J.A., et al.: General atomic and molecular electronic structure system. J. Comput. Chem., 14, 1347 (1993).

    Article  Google Scholar 

  22. Schnabel, T., Vrabec, J., Hasse, H.: Henry’s law constants of methane, nitrogen, oxygen and carbon dioxide in ethanol from 273 to 498 K. Fluid Phase Equilib., 233, 134 (2005).

    Article  Google Scholar 

  23. Schnabel, T., Vrabec, J., Hasse, H.: Erratum to “Henry’s law constants of methane, nitrogen, oxygen and carbon dioxide in ethanol from 273 to 498 K”. Fluid Phase Equilib., 239, 125 (2006).

    Article  Google Scholar 

  24. Schnabel, T., Cortada, M., Vrabec, J., Lago, S., Hasse, H.: Molecular Model for Formic Acid adjusted to Vapor-Liquid Equilibria. Chem. Phys. Lett., 435, 268 (2007).

    Article  Google Scholar 

  25. Stoll, J.: Molecular Models for the Prediction of Thermophysical Properties of Pure Fluids and Mixtures, Fortschritt-Berichte VDI, Reihe 3, 836, VDI Verlag, Düsseldorf, (2005).

    Google Scholar 

  26. Vrabec, J., Stoll, S., Hasse, H.: A set of molecular models for symmetric quadrupolar fluids. J. Phys. Chem. B, 105, 12126 (2001).

    Article  Google Scholar 

  27. Widom, B.: Some topics in the theory of fluids. J. Chem. Phys., 39, 2808 (1963).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schnabel, T., Eckl, B., Huang, YL., Vrabec, J., Hasse, H. (2008). Molecular Modeling of Hydrogen Bonding Fluids: Formic Acid and Ethanol + R227ea. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering `07. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74739-0_39

Download citation

Publish with us

Policies and ethics