Skip to main content

Quantitative Measurement of Materials Properties with the (Digital) Pulsed Force Mode

  • Chapter
Applied Scanning Probe Methods IX

Part of the book series: Nano Science and Technolgy ((NANO))

Abstract

In this contribution we present the potential of digital pulsed force mode (DPFM) atomic forcemicroscopy (AFM) formapping the local mechanical properties to surface topology. In the first part, we review the pulsed force mode principles and compare this mode with other common modes of dynamic AFM operation. Then, we present an overview of the different model for tip–sample interaction based on continuum mechanics theories. In a general view, we then show how the huge amount of data that is acquired during DPFM imaging is stored and how it can be processed in order to provide insight into local mechanics of the sample surfaces. Applications of this measurement technique show the possible impact of DPFM on condensed soft matter samples as well as possible extensions towards measurements of the in-plane mechanics of the tip and the surface. All mechanical DPFM data were analyzed on the basis of continuum mechanical models. We conclude our contribution with an overview of this technique and its benefits for lateral compositional mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Binnig G, Quate CF, Gerber C (1986) Phys Rev Lett 56:930

    Article  Google Scholar 

  2. Alexander S, Hellemans L, Marti O, Schneir J, Elings V, Hansma PK, Longmire M, Gurley J (1989) J Appl Phys 65:164

    Article  CAS  Google Scholar 

  3. Binnig G, Gerber C, Stoll E, Albrecht TR, Quate CF (1987) Europhys Lett 3:1281

    Article  CAS  Google Scholar 

  4. Blackman GS, Mate CM, Philpott MR (1990) Phys Rev Lett 65:2270

    Article  CAS  Google Scholar 

  5. Majumdar A, Oden PI, Carrejo JP, Nagahara LA, Graham JJ, Alexander J (1992) Appl Phys Lett 61:2293

    Article  CAS  Google Scholar 

  6. Jung TA, Moser A, Hug HJ, Brodbeck D, Hofer R, Hidber HR, Schwarz UD (1992) Ultramicroscopy 1446:42–44

    Google Scholar 

  7. Binnig G, Rohrer H (1982) Helv Phys Acta 55:726

    CAS  Google Scholar 

  8. Binnig G, Rohrer H, Gerber C, Weibel E (1982) Phys Rev Lett 49:57

    Article  Google Scholar 

  9. Hartmann U (1991) Ultramicroscopy 59:42–44

    Google Scholar 

  10. Erlandsson R, Olsson L (1998) Appl Phys A 66:S879

    Article  CAS  Google Scholar 

  11. Hansma PK, Cleveland JP, Radmacher M, Walters DA, Hillner PE, Bezanilla M, Fritz M, Vie D, Hansma HG, Prater CB, Massie J, Fukunaga L, Gurley J, Elings V (1994) Appl Phys Lett 64:1738

    Article  CAS  Google Scholar 

  12. Rosa-Zeiser A, Weilandt E, Hild S, Marti O (1997) Meas Sci Technol 8:1333

    Article  CAS  Google Scholar 

  13. De Pablo PJ, Colchero J, Gomez-Herrero J, Baro AM (1998) Appl Phys Lett 73:3300

    Article  Google Scholar 

  14. Krotil H-U, Stifter T, Marti O (2000) Rev Sci Instrum 71:2765

    Article  CAS  Google Scholar 

  15. Reynaud C, Sommer F, Quet C, El Bounia N, Tran Minh D (2000) Quantitative determination of Young’s modulus on a biphase polyamer system using atomic force microscopy. Surface and Interface Analysis, Vol. 30, Issue 1, pp 185–189, doi:10.1002/1096-9918(200008)30:1<185::AID-SIA862>3.0.CO;2-D

    Google Scholar 

  16. Stark RW, Drobek T, Heckl WM (1999) Appl Phys Lett 74:3296

    Article  CAS  Google Scholar 

  17. Stark RW, Heckl WM (2003) Rev Sci Instrum 74:5111

    Article  CAS  Google Scholar 

  18. Rodriguez T, Garcia R (2004) Appl Phys Lett 84:449

    Article  CAS  Google Scholar 

  19. Proksch R (2006) Appl Phys Lett 89:113121

    Article  CAS  Google Scholar 

  20. Marti O, Meinhard D, Rieger B, Schmatulla A (2007) Nanotechnology 18:044013(7pp)

    Google Scholar 

  21. Luginbühl R, Garrison MD, Overney RM, Weiss L, Schieferdecker H, Hild S, Ratner BD (2001) In: Castner DG, Grainger DW (eds) Fluorinated surfaces, coatings and films. American Chemical Society, Washington, p 187

    Google Scholar 

  22. Krotil H-U, Stifter T, Marti O (2000) Appl Phys Lett 77:3857

    Article  CAS  Google Scholar 

  23. Spizig PM (2002) Dynamische Rasterkraftmikroskopie, in Experimental Physics. PhD Thesis, Ulm University, Ulm

    Google Scholar 

  24. Moreno-Herrero F, de Pablo PJ, Colchero J, Gomez-Herrero J, Baro AM (2000) Surf Sci 453:152

    Article  CAS  Google Scholar 

  25. Bulychev SI, Alekhin VP, Shorshorov MK, Ternovskii AP, Shnyrev GD (1975) Ind Lab 41:1409

    Google Scholar 

  26. Bulychev SI, Alekhin VP, Shorshorov MK, Ternovskii AP (1976) Strength Mater:1084

    Google Scholar 

  27. Mizes HA, Loh K-G, Miller RJD, Ahuja SK, Grabowski EF (1991) Appl Phys Lett 59:2901

    Article  CAS  Google Scholar 

  28. Pharr GM, Oliver WC, Brotzen FR (1992) J Mater Res 7:613

    Article  CAS  Google Scholar 

  29. Boehnke U-C, Brodowsky HM, Groothues H, Kremer F (1999) J Phys Chem B 103:6741

    Article  CAS  Google Scholar 

  30. Prokhorenko P, Rudnitsky V, Kren A (2004) Rev Quant Nondestruct Eval 23:1135

    Google Scholar 

  31. Derjaguin BV, Landau L (1941) Acta Physicochim URSS 14:633

    Google Scholar 

  32. Stifter T, Marti O, Bhushan B (2000) Phys Rev B 62:13667

    Article  CAS  Google Scholar 

  33. Grigg DA, Russell PE, Griffith JE (1992) Tip–sample forces in scanning probe microscopy in air and vacuum. J Vac Sci Technol A: Vacuum, Surfaces, and Films. July 1992, Vol. 10, Issue 4, pp 680–683, doi:10.1116/1.577709

    Google Scholar 

  34. Miyatani T, Okamoto S, Rosa A, Marti O, Fujihira M (1998) Appl Phys A 66:349

    Article  Google Scholar 

  35. Johnson KL, Kendall K, Roberts AD (1971) Proc R Soc Lond Ser A 324:301

    CAS  Google Scholar 

  36. Derjaguin BV, Muller VM, Toporov YP (1980) J Colloid Interface Sci 73:293

    Article  Google Scholar 

  37. Cohen SR, Neubauer G, McClelland GM (1990) J Vac Sci Technol A 8:3449

    Article  CAS  Google Scholar 

  38. Landman U, Luedtke WD (1990) Science 248:454

    Article  CAS  Google Scholar 

  39. Johnson KL (1992) In: Singer IL, Pollock HM (eds) Fundamentals of friction: macroscopic and microscopic processes. Kluwer, Dordrecht, p 589

    Google Scholar 

  40. Landman U, Luedtke WD, Ringer EM (1992) Wear 153:3

    Article  CAS  Google Scholar 

  41. Hertz H (1881) J Reine Angew Math 92:156

    Google Scholar 

  42. Maugis D (2000) Contact, adhesion, and rupture of elastic solids. Springer, Berlin

    Google Scholar 

  43. Johnson KL (1996) Contact mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  44. Sneddon IN (1965) Int J Eng Sci 3:47

    Article  Google Scholar 

  45. Shorshorov MK, Bulychev SI, Aleklin VP (1981) Sov Phys Dokl 26:769

    Google Scholar 

  46. King RB (1987) Int J Solids Structures 23:1657

    Article  Google Scholar 

  47. Oliver WC, Pharr GM (1992) Mater Res 7:1564

    Article  CAS  Google Scholar 

  48. Lankarani HM, Nikravesh PE (1994) Continuous contact force models for impact analysis in multibody systems. Nonlinear Dynamics, Vol. 5, Number 2, März 1994, pp 193–207, doi:10.1007/BF00045676

    Google Scholar 

  49. Carpick RW, Ogletree DF, Salmeron M (1999) Colloid Interface Sci 211:395

    Article  CAS  Google Scholar 

  50. Borodich FM, Keer LM, Korach CS (2003) Nanotechnology 14:803

    Article  Google Scholar 

  51. Borodich FM, Keer LM (2004) Evaluation of elastic modulus of materials by adhesive (no-slip) nano-intendation. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 460, Issue 2042, pp 507–514, doi:10.1098/rspa.2003.1224

    Google Scholar 

  52. Franco AR Jr, Pintaúde G, Sinatora A, Pinedo CE (2004) Mater Res 7:483

    Google Scholar 

  53. Maugis D (1992) J Colloid Interface Sci 150:243

    Article  CAS  Google Scholar 

  54. Dugdale DS (1960) J Mech Phys Solids 8:100

    Article  Google Scholar 

  55. Johnson KL (1996) In: Bhushan B (ed) Micro/nanotribology and its applications. Kluwer, Dordrecht, pp 151–168

    Google Scholar 

  56. Johnson KL (1997) Proc R Soc Lond Ser A 453:163

    CAS  Google Scholar 

  57. Derjaguin BV, Muller VM, Toporov YP (1975) J Colloid Interface Sci 53:314

    Article  Google Scholar 

  58. Muller VM, Yushenko VS, Derjaguin BV (1980) J Colloid Interface Sci 77:91

    Article  CAS  Google Scholar 

  59. Holzwarth MJ, Gigler AM, Marti O (2006) Imaging Microsc 8:37

    Article  Google Scholar 

  60. Gigler A, Holzwarth M, Marti O (2007) J Phys Conf Ser (in press)

    Google Scholar 

  61. Krausch G (1997) J Phys Condens Matter 9:7741

    Article  CAS  Google Scholar 

  62. Ludwigs S, Krausch G, Reiter G, Losik M, Antonietti M, Schlaad H (2005) Macromolecules 38:7532

    Article  CAS  Google Scholar 

  63. Walheim S, Boeltau M, Mlynek J, Krausch G, Steiner U (1997) Macromolecules 30:4995

    Article  CAS  Google Scholar 

  64. Wang C, Krausch G, Geoghegan M (2001) Langmuir 17:6269

    Article  CAS  Google Scholar 

  65. Israelachvili JN (1991) Intermolecular and surface forces. 2 edn. Academic, London

    Google Scholar 

  66. Zoltowski P (1998) J Electroanal Chem 443:149

    Article  CAS  Google Scholar 

  67. Miyati T, Horii M, Rosa A, Fujihira M, Marti O (1997) Appl Phys Lett 71:2632

    Article  Google Scholar 

  68. Miyatani T, Okamoto S, Rosa A, Marti O, Fujihira M (1998) Appl Phys A 66:S349

    Article  CAS  Google Scholar 

  69. Mate CM, McClelland GM, Erlandsson R, Chiang S (1987) Phys Rev Lett 59:1942

    Article  CAS  Google Scholar 

  70. Mate CM, McClelland GM, Erlandsson R, Chiang S (1987) Phys Rev Lett 59:1942

    Article  CAS  Google Scholar 

  71. Krotil H-U, Stifter T, Marti O (2001) Rev Sci Instrum 72:150

    Article  CAS  Google Scholar 

  72. Marti O, Colchero J, Mlynek J (1990) Nanotechnology 1:141

    Article  Google Scholar 

  73. Meyer G, Amer NM (1990) Appl Phys Lett 57:2089

    Article  CAS  Google Scholar 

  74. Maivald P, Butt HJ, Gould SAC, Prater CB, Drake B, Gurley JA, Elings VB, Hansma PK (1991) Nanotechnology 2:103

    Article  Google Scholar 

  75. Krotil H-U, Weilandt E, Stifter T, Marti O, Hild S (1999) Surf Interface Anal 27:341

    Article  CAS  Google Scholar 

  76. Troyon M, Wang Z, Pastre D, Lei HN, Hazotte A (1997) Nanotechnology 8:163

    Article  CAS  Google Scholar 

  77. Meyer G, Amer NM (1988) Appl Phys Lett 53:1045

    Article  Google Scholar 

  78. Banerjea A, Smith JR, Ferrante J (1990) J Phys Condens Matter 2:8841

    Article  Google Scholar 

  79. Weisenhorn AL, Khorsandi M, Kasas S, Gotzos V, Butt H-J (1992) Nature

    Google Scholar 

  80. Weisenhorn AL, Maivald P, Butt H-J, Hansma PK (1992) Phys Rev B 45:11226

    Article  Google Scholar 

  81. Putman CAJ, Vanderwerf KO, Degrooth BG, Vanhulst NF, Greve J (1994) Biophys J 67:1749

    Article  CAS  Google Scholar 

  82. Putman CAJ, van der Werf KO, de Grooth BG, van Hulst NF (1994) Appl Phys Lett 64:2454

    Article  CAS  Google Scholar 

  83. Stolz M, Raiteri R, Daniels AU, VanLandingham MR, Baschong W, Aebi U (2004) Biophys J 86:3269

    CAS  Google Scholar 

  84. Nagao E, Dvorak JA (1998) Am Lab 30:36

    Google Scholar 

  85. Jacobs EP, Roux SP, van Reenen AJ, Morkel C, Meincken M (2006) J Membr Sci 276:8

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gigler, A., Marti, O. (2008). Quantitative Measurement of Materials Properties with the (Digital) Pulsed Force Mode. In: Tomitori, M., Bhushan, B., Fuchs, H. (eds) Applied Scanning Probe Methods IX. Nano Science and Technolgy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74083-4_2

Download citation

Publish with us

Policies and ethics