Skip to main content

Self-Assembled Monolayers on Aluminum and Copper Oxide Surfaces: Surface and Interface Characteristics, Nanotribological Properties, and Chemical Stability

  • Chapter
Applied Scanning Probe Methods IX

Part of the book series: Nano Science and Technolgy ((NANO))

Abstract

The formation of self-assembled monolayer (SAM) films onto aluminum and copper oxide surfaces by reaction with 1H,1H,2H,2H-perfluorodecylphosphonic acid (PFDP), octadecylphosphonic acid (ODP), decylphosphonic acid (DP), octylphosphonic acid (OP), and 1H,1H,2H,2H-perfluorodecyldimethylchlorosilane (PFMS) is discussed in this chapter. The properties and chemical stability of the films have been investigated using complementary surface analysis techniques: X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), friction force microscopy (FFM), a derivative of AFM, contact anglemeasurements, and Fourier transform infrared reflection/absorption spectroscopy (FT-IRRAS). XPS data confirm the presence of alkylphosphonate (perfluorinated and nonperfluorinated) and perfluorosiloxy molecules in the PFDP/Al, ODP/Al, DP/Al, OP/Al, and PFMS/Al SAMs formed on aluminum oxide surfaces. The sessile drop static contact angles of deionized water on PFDP/Al and PFMS/Al are typically more than 130◦ and on ODP/Al, DP/Al, and OP/Al typically more than 125◦, indicating that Al surfaces reacted with alkylphosphonic acids and alkylsilanes are very hydrophobic. The surface roughness for PFDP/Al, ODP/Al, DP/Al, OP/Al, PFMS/Al, and unmodified Al is approximately 35 nm, as determined by AFM. The critical surface tension for PFDP/Al has been determined to be approximately 11 mJm−2 (mNm−1) by the Zisman plot method compared with 16, 20, 21, and 25 mJm−2 for PFMS/Al, ODP/Al, DP/Al, and OP/Al, respectively. PFDP/Al gives the lowest adhesion and friction force, while unmodified Al gives the highest. The adhesion and friction forces for ODP/Al and DP/Al SAMs are in-between those of PFDP/Al and Al. The influence of relative humidity, temperature, and sliding velocity on the friction and adhesion behavior has also been studied. Failure mechanisms of SAMs have been investigated by wear tests. The chemical stability of ODP/Al, PFDP/Al, DP/Al, OP/Al, and PFMS/Al SAMs has been tested by exposure to warm nitric acid (pH 1.8, 30 min, 60– 95 ◦C). The XPS data and stability against harsh chemical conditions indicate that a type of bond forms between a phosphonic acid or silane molecule and the oxidized Al surface. Stability tests using warm nitric acid (pH 1.8, 30 min, 60–95 ◦C) show ODP/Al SAMs to be most stable, followed by PFDP/Al, DP/Al, PFMS/Al, and OP/Al. Hydrophobic, low adhesion, and robust Al surfaces have useful applications for microelectromechanical/nanoelectromechanical systems (MEMS/NEMS), such as the digital micromirror device. These studies are expected to aid in the design and selection of proper lubricants and antistiction coatings forMEMS/NEMS. The PFMS SAM on Cu is found to be extremely hydrophobic, typically having sessile drop static contact angles of more than 130◦ for deionized water and a critical surface tension of 14 mJm−2. FFM shows a significant reduction in the adhesive force and friction coefficient of PFMS-modified Cu (PFMS/Cu) compared with unmodified Cu. Treatment by exposure to harsh conditions shows that a PFMS/CuSAMcan withstand boiling nitric acid (pH 1.8), boiling water, and warm sodium hydroxide (pH 12, 60 ◦C) solutions for at least 30 min. Furthermore, no SAM degradation is observed when PFMS/Cu is exposed to warm nitric acid solution for up to 70 min at 60 ◦C or 50 min at 80 ◦C. XPS and FT-IRRAS data reveal a coordination of the PFMS Si atom with a cuprate (CuO) molecule present on the oxidized Cu substrate. The data give good evidence that the stability of the SAM film on the PFMS-modified oxidized Cu surface is largely due to 236 E. Hoque et al. the formation of a siloxy–copper (–Si–O-Cu–) bond via a condensation reaction between silanol (–Si–OH) and copper hydroxide (CuOH). Extremely hydrophobic (low surface energy) and stable PFMS/Cu SAMs films could be useful for surface passivation, corrosion inhibition and/or as antiwetting/low-adhesion promoters in microelectronical/nanoelectromechanical devices or on heat-exchange surfaces (dropwise condensation).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ulman A (1996) Chem Rev 96:1533–1554

    Article  CAS  Google Scholar 

  2. Ulman A, Evans SD, Shnidman Y, Sharma R, Eilers JE, Chang JC (1991) J Am Chem Soc 113:1499–1506

    Article  CAS  Google Scholar 

  3. Schreiber F (2000) Prog Surf Sci 65:151–256

    Article  CAS  Google Scholar 

  4. Scherer J, Vogt MR, Magnussen OM, Behm RJ (1997) Langmuir 13:7045–7051

    Article  CAS  Google Scholar 

  5. Jennings GK, Laibinis PE (1996) Colloids Surf A 116:105–114

    Article  CAS  Google Scholar 

  6. Tan YS, Srinivasan MP, Pehkonen SO, Chooi SYM (2004) J Vac Sci Technol A 22:1917–1925

    Article  CAS  Google Scholar 

  7. Tremont R, De Jesús-Cardona H, Garcia-Orozco J, Castro RJ, Cabrera CR (2000) J Appl Electrochem 30:737–743

    Article  CAS  Google Scholar 

  8. Xiao X, Hu J, Charych DH, Salmeron M (1996) Langmuir 12:235–237

    Article  CAS  Google Scholar 

  9. Blackman GS, Mate CM, Philpott MR (1990) Phys Rev Lett 65:2270–2273

    Article  CAS  Google Scholar 

  10. Bhushan B, Cichomski M, Hoque E, DeRose JA, Hoffmann P, Mathieu HJ (2006) Microsyst Technol 12:588–596

    Article  CAS  Google Scholar 

  11. Hoque E, DeRose JA, Kulik G, Hoffmann P, Mathieu HJ, Bhushan B (2006) J Phys Chem B 110:10855–10861

    Article  CAS  Google Scholar 

  12. Bhushan B (ed) (2005) Nanotribology and nanomechanics—an introduction. Springer, Berlin

    Google Scholar 

  13. Kim S, Choi GY, Ulman A, Fleischer C (1997) Langmuir 13:6850–6856

    Article  CAS  Google Scholar 

  14. Salomon A, Cahen D, Lindsay S, Tomfohr J, Engelkes VB, Frisbie CD (2003) Adv Matter 15:1881–1890

    Article  CAS  Google Scholar 

  15. Halik M, Klauk H, Zschieschang U, Schmid G, Dehm C, Schütz M, Maisch S, Effenberger F, Brunnbauer M, Stellacci F (2004) Nature 431:963–966

    Article  CAS  Google Scholar 

  16. Rawlett AM, Hopson TJ, Amlani I, Zhang R, Tresek J, Nagahara LA, Tsui RK, Goronkin H (2003) Nanotechnology 14:377–384

    Article  CAS  Google Scholar 

  17. Troisi A, Ratner MA (2004) Nano Lett 4:591–595

    Article  CAS  Google Scholar 

  18. Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Chem Rev 105:1103–1169

    Article  CAS  Google Scholar 

  19. Hoque E, DeRose JA, Hoffmann P, Mathieu HJ, Bhushan B, Cichomski M (2006) J Chem Phys 124:174710–174715

    Article  CAS  Google Scholar 

  20. Hoque E, DeRose JA, Hoffmann P, Mathieu HJ (2006) J Surf Anal 13:178–184

    CAS  Google Scholar 

  21. Hoque E, DeRose JA, Houriet R, Hoffmann P, Mathieu HJ (2007) Chem Mater 19:798–804

    Article  CAS  Google Scholar 

  22. Hoque E, DeRose JA, Hoffmann P, Mathieu HJ (2006) Surf Interface Anal 38:62–68

    Article  CAS  Google Scholar 

  23. Ulman A (1991) An introduction to ultrathin organic films: from Langmuir-Blodgett to self-assembly. Academic, San Diego

    Google Scholar 

  24. Allara DL, Nuzzo RG (1985) Langmuir 1:45–52

    Article  CAS  Google Scholar 

  25. Allara DL, Nuzzo RG (1985) Langmuir 1:52–66

    Article  CAS  Google Scholar 

  26. Brovelli D, Häner G, Ruiz L, Hofer R, Kraus G, Waldner A, Schlösser J, Oroszlan P, Ehrat M, Spencer ND (1999) Langmuir 15:4324–4327

    Article  CAS  Google Scholar 

  27. Textor M, Ruiz L, Hofer R, Rossi A, Feldman K, Hähner G, Spencer ND (2000) Langmuir 16:3257–3271

    Article  CAS  Google Scholar 

  28. Pellerite MJ, Dunbar TD, Boardman LD, Wood EJ J Phys Chem B 16:3257–3271

    Google Scholar 

  29. Liakos IL, Newman RC, McAlpine E, Alexander MR (2004) Surf Interface Anal 36:347–354

    Article  CAS  Google Scholar 

  30. Kelley TW, Boardman LD, Dunbar TD, Muyres DV, Pellerite MJ, Smith TP (2003) J Phys Chem B 107:5877–5881

    Article  CAS  Google Scholar 

  31. Adolphi B, Jähne E, Busch G, Cai X (2004) Anal Bioanal Chem 379:646–652

    Article  CAS  Google Scholar 

  32. Frisbie CD, Rozsnyai LF, Noy A, Wrighton MS, Lieber CM (1994) Science 265:2071–2074

    Article  CAS  Google Scholar 

  33. Kasai T, Bhushan B, Kulik G, Barbieri L, Hoffmann P (2005) J Vac Sci Technol B 23:995–1003

    Article  CAS  Google Scholar 

  34. Wei G, Bhushan B, Jacobs SJ (2004) Ultramicroscopy 100:375–389

    Article  CAS  Google Scholar 

  35. Hornbeck LJ (2001) MRS Bull 26:325–327

    Google Scholar 

  36. Tambe NS, Bhushan B (2005) Nanotechnology 16:1549–1558

    Article  CAS  Google Scholar 

  37. Bhushan B (1998) Tribology issues and opportunities in MEMS. Kluwer, Dordrecht

    Google Scholar 

  38. Bhushan B (2003) J Vac Sci Technol B 21:2262–2296

    Article  CAS  Google Scholar 

  39. Bhushan B, Liu H (2004) Nanotechnology 15:1785–1791

    Article  Google Scholar 

  40. Bhushan B (2007) Springer handbook of nanotechnology, 2nd edn. Springer, Heidelberg

    Google Scholar 

  41. Bhushan B (1999) Handbook of micro/nano tribology, 2nd edn. CRC, Boca Raton

    Google Scholar 

  42. Hoque E, DeRose JA, Hoffmann P, Bhushan B, Mathieu HJ (2007) J Phys Chem C 111:3956–3962

    Article  CAS  Google Scholar 

  43. Pellerite MJ, Wood EJ, Jones VW (2002) J Phys Chem B 106:4746–4754

    Article  CAS  Google Scholar 

  44. Laiho T, Leiro JA, Heinonen MH, Mattila SS, Lukkari J (2005) J Electron Spectrosc Relat Phenom 142:105–112

    Article  CAS  Google Scholar 

  45. Sung MM, Kim Y (2001) Bull Korean Chem Soc 22:748–752

    CAS  Google Scholar 

  46. Whelan CM, Kinsella M, Ho HM, Maex K (2004) J Electrochem Soc 151:B33–B38

    Article  CAS  Google Scholar 

  47. Skolnik AM, Hughes WC, Augustine BH (2000) Chem Educator 5:8–13

    Article  CAS  Google Scholar 

  48. Laibinis PE, Whitesides GM (1992) J Am Chem Soc 114:9022–9028

    Article  CAS  Google Scholar 

  49. Rose JW (2002) Proc Inst Mech Eng Part A J Power Energy 215:115–128

    Article  Google Scholar 

  50. Leach RN, Stevens F, Langford SC, Dickinson JT (2006) Langmuir 22:8864–8872

    Article  CAS  Google Scholar 

  51. Izumi M, Kumagai S, Shimada R, Yamakawa N (2004) Exp Therm Fluid Sci 28:243–248

    Article  CAS  Google Scholar 

  52. Ganzevles FLA, van der Geld CWM (2002) Int J Heat Mass Transfer 45:3233–3243

    Article  CAS  Google Scholar 

  53. Das AK, Kitty HP, Marto PJ, Andeen GB, Kumar K (2000) J Heat Transfer Trans ASME 122:278–286

    Article  CAS  Google Scholar 

  54. Hoque E, DeRose JA, Hoffmann P, Bhushan B, Mathieu HJ (2007) J Chem Phys 126:114706–114713

    Article  CAS  Google Scholar 

  55. Somlo B, Gupta V (2001) Mech Mater 33:471–480

    Article  Google Scholar 

  56. Hansal WEG, Hansal S, Pölzler M, Kornherr A, Zifferer G, Nauer GE (2006) Surf Coat Technol 200:3056–3063

    Article  CAS  Google Scholar 

  57. Du T, Luo Y, Desai V (2004) Microelectron Eng 71:90–97

    Article  CAS  Google Scholar 

  58. Briggs D, Seah MP (1990) Practical surface analysis by Auger and X-ray photoelectron spectroscopy, vol 1, 2nd edn. Wiley, New York

    Google Scholar 

  59. Du T, Tamboli D, Desai V, Seal S (2004) J Electrochem Soc 151:G230–G235

    Article  CAS  Google Scholar 

  60. Hernandez J, Wrschka P, Oehrleinc GS (2001) J Electrochem Soc 148:G389–G397

    Article  CAS  Google Scholar 

  61. Ramsier RD, Henriksen PN, Gent AN (1988) Surf Sci 203:72–88

    Article  CAS  Google Scholar 

  62. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy. PerkinElmer, MN

    Google Scholar 

  63. Allara DL, Parikh AN, Judge E (1994) J Chem Phys 100:1761–1764

    Article  CAS  Google Scholar 

  64. Leung YL, Zhou MY, Wong PC, Mitchell KAR (1992) Appl Surf Sci 59:23–29

    Article  CAS  Google Scholar 

  65. Franquet A, Biesemans M, Terryn H, Willem R, Vereecken J (2006) Surf Interface Anal 38:172–175

    Article  CAS  Google Scholar 

  66. Wagner CD, Passoja DE, Hillery HF, Kinisky TG, Six HA, Taylor WT (1982) J Vac Sci Technol 21:933–944

    Article  CAS  Google Scholar 

  67. Schnyder B, Lippert T, Kötz R, Wokaun A, Graubner V-M, Nuyken O (2003) Surf Sci 532–535:1067–1071

    Google Scholar 

  68. Korösi G, Kováts ES (1981) J Chem Eng Data 26:323–332

    Article  Google Scholar 

  69. Xu X, He J-W, Goodman DW (1993) Surf Sci 284:103–108

    Article  CAS  Google Scholar 

  70. da Cruz RS, de Silva JM, Arnold U, Sercheli MS, Schuchardt U (2002) J Braz Chem Soc 13:170–176

    Google Scholar 

  71. Bhushan B, Liu H (2001) Phys Rev B 63:245412-1–245412-11

    Google Scholar 

  72. Chidsey CED, Loiacono DN (1990) Langmuir 6:682–691

    Article  CAS  Google Scholar 

  73. Clark ES (1999) Polymer 40:4659–4665

    Article  CAS  Google Scholar 

  74. Liu H, Bhushan B (2002) Ultramicroscopy 91:185–202

    Article  CAS  Google Scholar 

  75. McDermott M, Green J, Porter M (1997) Langmuir 13:2504–2510

    Article  CAS  Google Scholar 

  76. Lide DR (ed) (2004) Handbook of chemistry and physics, 85th edn. CRC, Boaca Raton

    Google Scholar 

  77. Tambe NS, Bhushan B (2005) Nanotechnology 16:2309–2324

    Article  Google Scholar 

  78. Wallace RM, Chen PJ, Henck SA, Webb DA (1995) J Vac Sci Technol A 13:1345–1350

    Article  CAS  Google Scholar 

  79. Chen PJ, Wallace RM, Henck SA (1998) J Vac Sci Technol A 16:700–706

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hoque, E., DeRose, J., Bhushan, B., Mathieu, H. (2008). Self-Assembled Monolayers on Aluminum and Copper Oxide Surfaces: Surface and Interface Characteristics, Nanotribological Properties, and Chemical Stability. In: Tomitori, M., Bhushan, B., Fuchs, H. (eds) Applied Scanning Probe Methods IX. Nano Science and Technolgy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74083-4_10

Download citation

Publish with us

Policies and ethics