Skip to main content

Free Modal Algebras: A Coalgebraic Perspective

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4624))

Abstract

In this paper we discuss a uniform method for constructing free modal and distributive modal algebras. This method draws on works by (Abramsky 2005) and (Ghilardi 1995). We revisit the theory of normal forms for modal logic and derive a normal form representation for positive modal logic. We also show that every finitely generated free modal and distributive modal algebra axiomatised by equations of rank 1 is a reduct of a temporal algebra.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramsky, S.: Domain theory in logical form. Ann. Pure Appl. Logic 51, 1–77 (1991)

    Article  MathSciNet  Google Scholar 

  2. Abramsky, S.: A Cook’s tour of the finitary non-well-founded sets. In We Will Show Them: Essays in Honour of Dov Gabbay. College Publications, 2005. BCTCS (1988) (presented)

    Google Scholar 

  3. Aczel, P.: Non-Well-Founded Sets. CSLI, Stanford (1988)

    Google Scholar 

  4. Adámek, J., Trnková, V.: Automata and Algebras in Categories. Kluwer Academic Publishers, Dordrecht (1990)

    MATH  Google Scholar 

  5. Baltag, A.: STS: A Structural Theory of Sets. PhD thesis, Indiana University (1998)

    Google Scholar 

  6. Barr, M.: Terminal coalgebras in well-founded set theory. Theoret. Comput. Sci. 114, 299–315 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bezhanishvili, N.: Lattices of Intermediate and Cylindric Modal Logics. PhD thesis, ILLC, University of Amsterdam (2006)

    Google Scholar 

  8. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. CUP (2001)

    Google Scholar 

  9. Bonsangue, M., Kurz, A.: Duality for logics of transition systems. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, Springer, Heidelberg (2005)

    Google Scholar 

  10. Bruun, H., Gehrke, M.: Distributive lattice-structured ontologies, Draft (2006)

    Google Scholar 

  11. Celani, S., Jansana, R.: Priestley duality, a Sahlqvist theorem and a Goldblatt-Thomason theorem for positive modal logic. J. of the IGPL 7, 683–715 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chagrov, A., Zakharyaschev, M.: Modal Logic. OUP (1997)

    Google Scholar 

  13. Davey, B., Goldberg, M.: The free p-algebra generated by a distributive lattice. Algebra Universalis 11, 90–100 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  14. Davey, B., Priestley, H.: Introduction to Lattices and Order. CUP (1990)

    Google Scholar 

  15. Engelking, R.: General Topology. Heldermann Verlag (1989)

    Google Scholar 

  16. Fine, K.: Normal forms in modal logic. Notre Dame J. Formal Logic 16, 229–237 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ghilardi, S.: Free Heyting algebras as bi-Heyting algebras. Math. Rep. Acad. Sci. Canada XVI 6, 240–244 (1992)

    MathSciNet  Google Scholar 

  18. Ghilardi, S.: An algebraic theory of normal forms. Ann. Pure Appl. Logic 71, 189–245 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  19. Johnstone, P.: Stone Spaces. CUP (1982)

    Google Scholar 

  20. Johnstone, P.: Vietoris locales and localic semilattices. In: Continuous lattices and their applications. Lecture Notes in Pure and Appl. Math. pp. 155–180. New York (1985)

    Google Scholar 

  21. Kupke, C.: Finitary Coalgebraic Logics. PhD thesis, ILLC, Amsterdam (2006)

    Google Scholar 

  22. Kupke, C., Kurz, A., Venema, Y.: Stone coalgebras. Theoret. Comput. Sci. 327, 109–134 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kurz, A., Rosický, J.: Strongly complete logics for coalgebras. (submitted, electronically available)

    Google Scholar 

  24. Marx, M., Mikulás, S.: An elementary construction for a non-elementary procedure. Studia Logica 72, 253–263 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  25. Moss, L.: Finite models constructed from canonical formulas. Journal of Philosophical Logic (to appear, 2007)

    Google Scholar 

  26. Oka, S.: The topological types of hyperspaces of 0-dimensional compacta. Topology and its Applications 149, 227–237 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  27. Palmigiano, A.: A coalgebraic view on positive modal logic. Theoret. Comput. Sci. 327, 175–195 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  28. Pelczynski, A.: A remark on spaces 2X for zero-dimensional X. Bull. Pol. Acad. Sci. 13, 85–89 (1965)

    MATH  MathSciNet  Google Scholar 

  29. Schröder, L., Pattinson, D.: PSPACE bounds for rank 1 modal logics. In: LICS 2006 (2006)

    Google Scholar 

  30. Venema, Y.: Algebras and coalgebras. In: Blackburn, P., van Benthem, J., Wolter, F. (eds.) Handbook of Modal Logic, pp. 331–426. Elsevier, Amsterdam (2007)

    Google Scholar 

  31. Worrell, J.: On the final sequence of an finitary set functor. Theoret. Comput. Sci. 338, 184–199 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Till Mossakowski Ugo Montanari Magne Haveraaen

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bezhanishvili, N., Kurz, A. (2007). Free Modal Algebras: A Coalgebraic Perspective. In: Mossakowski, T., Montanari, U., Haveraaen, M. (eds) Algebra and Coalgebra in Computer Science. CALCO 2007. Lecture Notes in Computer Science, vol 4624. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73859-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73859-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73857-2

  • Online ISBN: 978-3-540-73859-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics