Skip to main content

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 361))

Abstract

The on-line diagnosis is a key requirement of industrial processes. This is particularly true in the case of biological process due to the composition of media, the requirements of operating conditions and the wide variety of possible disturbances that necessitate careful and constant monitoring of the processes. Moreover, because only partial information is available in an on-line context and because of the technical and biological complexities of the involved processes, specific characteristics are required for diagnosis purposes. Several approaches like quantitative model based, qualitative model based and process history based methods were applied over the years. This chapter presents a methodological framework based on Evidence theory to manage the fault signals generated by conventional approaches (i.e., residuals from hardware and software redundancies, fuzzy logic based modules for process state assessment) and to account for uncertainty. The advantages of using evidence theory like modularity, detection of conflict and doubt in the information sources are illustrated with experimental results from a 1m 3 fixed bed anaerobic digestion process used for the treatment of industrial distillery wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. An. Spatial reasoning and integration techniques for geophysical and geological exploration data. PhD thesis, University of Manitoba, Canada, 1992.

    Google Scholar 

  2. M. Basseville. Detecting changes in signals and systems-A survey. Automatica, 24(3):309–326, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  3. J.C. Bouvier, J.P. Steyer, T. Conte, P. Gras, and J.P. Delgenès. On-line titrimetric sensor for the control of anaerobic digestion processes. In Latin American Workshop and Symposium on Anaerobic Digestion, pages 65–68, Merida, Mexico, 2002.

    Google Scholar 

  4. X. Chen and I. Petrounias. A development framework for temporal data mining. Bramer, M.A., 1999.

    Google Scholar 

  5. A.P. Dempster. Upper and lower probabilities induced by a multivalued mapping. Annals. of Mathematical Statistics, 38:325–339, 1967.

    MathSciNet  Google Scholar 

  6. J. Dezert. Towards a New Concept of Autonomous Craft Navigation. A Link Between Probabilistic Data Association Filtering and the Theory of Evidence. PhD thesis, Université d’Orsay, France, 1990.

    Google Scholar 

  7. D. Dubois and H. Prade. Representation and combination of uncertainty with belief functions and possibility measures. Computational Intelligence, 4:244–264, 1998.

    Article  Google Scholar 

  8. P.M. Frank. Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy: A survey and some new results. Automatica, 26(3):459–474, 1990.

    Article  MATH  Google Scholar 

  9. T.G. Garvey. Evidential reasoning for geographic evaluation for helicopter route planning. IEEE Trans. Geoscience and Remote Sensing, 25(3):294–304, 1987.

    Article  Google Scholar 

  10. A. Genovesi, J. Harmand, and J.P. Steyer. Integrated fault detection and isolation: Application to a winery’s wastewater treatment plant. Applied Intelligence Journal (APIN), 13:207–224, 2000.

    Google Scholar 

  11. J. Gertler and D. Singer. A new structural framework for parity equations-based failure detection and isolation. Automatica, 26:381–388, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  12. R. Isermann. Process fault detection based on modeling and estimation methods-A survey. Automatica, 20(4):387–404, 1984.

    Article  MATH  Google Scholar 

  13. R. Isermann and P. Balle. Trends in the application of model-based fault detection and diagnosis of technical processes. Control Eng. Pract., 5(5):709–719, 1997.

    Article  Google Scholar 

  14. F. Janez. Fusion of informations sources defined on different nonexhaustive reference sets. PhD thesis, Université d’Angers, France, 1996.

    Google Scholar 

  15. K. Kipling, M. Willis, J. Glassey, and G. Montague. Bioprocess improvement through knowledge elicitation. In International Symposium on Computer Applications in Biotechnology (CAB), pages 56–61, Nancy, France, 2004.

    Google Scholar 

  16. M.A. Kramer. Malfunction diagnosis using quantitative models with nonboolean reasonning in expert systems. A.I.Ch.E. Journal, 33(l):130–140, 1987.

    Google Scholar 

  17. L. Lardon, O. Bernard, and J.P. Steyer. Application du modèle des croyances transférables pour le diagnostic d’un réseau de capteurs et d’observateurs: application a un procédé de traitement des eaux. In CIFA, Douz, Tunisie, 2004.

    Google Scholar 

  18. L. Lardon, J.P. Steyer, E. Roca, J. Lema, S. Lambert, P. Ratini, S. Frattesi, and O. Bernard. Specifications of modular internet-based remote supervision systems for wastewater treatment plants. In Eur. Conf. Artificial Intell. (ECAI), pages 5.1–5.5, Lyon, France, 2002.

    Google Scholar 

  19. L. Lardon and J.P. Steyer. Using evidence theory for diagnosis of sensors networks: application to a wastewater treatment process. In Int. Joint Conf. Artificial Intell. (IJCAI), pages 29–36, Acapulco, Mexico, 2003.

    Google Scholar 

  20. E. Lefevre, O. Colot, and P. Vannoorenberghe. Belief function combination and conflict management. Information Fusion, 3(2):149–162, 2002.

    Article  Google Scholar 

  21. J. Montmain and S. Gentil. Decision-making in fault detection: A fuzzy approach. In Int. Conf. TOOLDIAG, Toulouse, France, 1993.

    Google Scholar 

  22. J.M. Nigro and M. Rombaut. IDRES: A rule-based system for driving situation recognition with uncertainty management. Information Fusion, 4(4):309–317, 2003.

    Article  Google Scholar 

  23. A. Rakar and D. Juricic. Diagnostic reasoning under conflicting data: the application of the transferable belief model. J. Process Control, 12(l):55–67, 2002.

    Article  Google Scholar 

  24. A. Rakar, D. Juricic, and P. Balle. Diagnostic reasoning under conflicting data: the application of the transferable belief model. Eng. Applic. Artificial Intell., 12(5):555–567, 1999.

    Article  Google Scholar 

  25. G. Shafer. A mathematical theory of evidence. Princeton University Press, 1976.

    Google Scholar 

  26. P. Smets. A mathematico-statistical model simulating the process of medical diagnosis. PhD thesis, Université Libre de Bruxelles, Faculty of Medicine, 1978.

    Google Scholar 

  27. P. Smets. The combination of evidence in the transferable belief model. IEEE Trans. Pattern Analysis and Machine Intelligence, 12(5):447–458, 1990.

    Article  Google Scholar 

  28. P. Smets and R. Kennes. The transferable belief model. 66(2):191–234, 1994.

    MATH  MathSciNet  Google Scholar 

  29. J.P. Steyer, J.C. Bouvier, T. Conte, P. Gras, J. Harmand, and J.P. Delgenes. On-line measurements of COD, TOC, VFA, total and partial alkalinity in anaerobic digestion process using infra-red spectrometry. Wat. Sci. Technol., 45(10):133–138, 2002.

    Google Scholar 

  30. J.P. Steyer, J.C. Bouvier, T. Conte, P. Gras, and P. Sousbie. Evaluation of a four year experience with a fully instrumented anaerobic digestion process. Wat. Sci. Technol., 45(4–5):495–502, 2002.

    Google Scholar 

  31. J.P. Steyer, I. Queinnec, and D. Simoes. BIOTECH: A real time application of artificial intelligence for fermentation processes. Control Eng. Pract., 1(2):315–321, 1993.

    Article  Google Scholar 

  32. D.E. Totzke. Anaerobic treatment technology overview. Technical report, Applied Technologies Inc., USA, 1999.

    Google Scholar 

  33. M. Ulieru and R. Isermann. Design of a fuzzy-logic based diagnostic model for technical processes. Fuzzy Sets and Systems, 58:249–271, 1993.

    Article  Google Scholar 

  34. J. Van Lier, A. Tilche, B.K. Ahring, H. Macarie, R. Moletta, M. Dohanyos, L.W. Hulshoff Pol, P. Lens, and W. Verstraete. New perspectives in anaerobic digestion. Wat. Sci. Technol., 43(1):1–18, 2001.

    Google Scholar 

  35. W. Verstraete and P. Vandevivere. New and broader applications of anaerobic digestion. Critical Reviews in Environmental Science and Technology, 29(2):151–165, 1999.

    Article  Google Scholar 

  36. A.S. Willsky. A survey of design methods for failure detection in dynamic systems. Automatica, 12(6):601–611, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  37. R.R. Yager. On the Dempster-Shafer framework and new combination rules. Information Sciences, 41(2):93–137, 1987.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lardon, L., Steyer, J.P. (2007). Advances in Diagnosis of Biological Anaerobic Wastewater Treatment Plants. In: Oscar Méndez-Acosta, H., Femat, R., González-Álvarez, V. (eds) Selected Topics in Dynamics and Control of Chemical and Biological Processes. Lecture Notes in Control and Information Sciences, vol 361. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73188-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73188-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73187-0

  • Online ISBN: 978-3-540-73188-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics