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Abstract. This work is motivated by experiences in the course of de-
veloping an ontology-based application within a real-world setting. We
found out that current benchmarks are not well suited to provide help-
ful hints for users who seek for an appropriate reasoning system able to
deal with expressive terminological descriptions, large volumes of asser-
tional data, and frequent updates in a sound and complete way. This
paper tries to provide some insights into currently available reasoning
approaches and aims at identifying requirements to make future bench-
marks more useful for application developers.

1 On Benchmarking OWL Reasoners

Having sufficiently exhaustive knowledge about the influence of the underly-
ing reasoning approach on the practical tractability of a particular ontology is
of fundamental importance when selecting an inference engine for a real-world
application. By real-world we mean an ontology-based application with an ex-
pressivity at least beyond ALC, containing more than thousands of individuals,
and an inference response time of less than a second, even in a dynamical setting
of frequent ontology updates. For instance, context-aware applications want to
offer services to users based on their actual situation. Experiences in the course
of operating a context-aware application for mobile users [1] clearly have shown
that the quality of such an application hosted on a server significantly depends
on the availability of reliable and scalable reasoning systems able to deal with
constantly changing data. In order to meet real-world needs a reasoning system
also has to offer a sufficiently expressive query language as well as a flexible and
efficient communication interface.

Unfortunately, current benchmarks or system comparisons neither draw a
clear picture of the landscape of practically tractable language fragments with
respect to large amounts of instance data, give valuable insights into pros and
cons of different reasoning approaches, identify performance penalties caused by
certain language features, nor consider issues such as updates, incremental query
answering, or interfaces.

For instance, many benchmarks consist of synthetical generated and sparsely
interrelated data using inexpressive ontology languages such as the widely used
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Lehigh University Benchmark (LUBM) [2]. In case of the LUBM an incomplete
query answering procedure exploiting told information about the individuals
from a classified TBox is sufficient to answer the given queries correctly. The
published RacerPro results [3] heavily rely on this property of the LUBM. The
bottom line is that RacerPro shows an impressive performance for solving this
ABox benchmark by switching off ABox reasoning. Obviously, this cannot be
considered as a meaningful benchmark and it is not surprising that this test suite
has let to exceptional performance for almost all inherently incomplete reasoning
systems. On the other hand, the University Ontology Benchmark (UOBM) [4], a
direct extension of the LUBM in terms of expressiveness, turned out to be much
too difficult for most systems to answer correctly within reasonable time. This
well known trade-off between tractable and effectively un-tractable ontologies,
the so called computational cliff, is caused by an increase in language expressivity
[5]. A more fine-grained map of the border of effectively tractable ontologies still
needs to be practically explored in order to be helpful for developers.

The discussion of inherent drawbacks and advantages of different approaches
with respect to diverse application tasks has been largely neglected in recent
benchmarks or system comparisons. However, application developers need to be
aware of potential trade-offs and a serious benchmark should discuss its results
with respect to alternative reasoning approaches.

Another performance related issue deals with the way of feeding the systems
with large amounts of data. Our selective tests have shown that for some systems
not only the transmission format (RDF/XML or DIG [6]) is of importance, but
also the way data is encoded (e. g. deep vs. flat serialization).

A real-world requirement which has not been taken into account in any bench-
mark so far is concerned with dynamic data. The ABox is not only expected to
be the largest part of an ontology but is also subject to frequent changes. In
order to serve as an efficient reasoning component within a realistic setting it
is necessary to perform well under small ABox updates. First results in this
research direction, e. g. [7], need to be evaluated by appropriate benchmarks.

Finally, all benchmark results need to be weighted with respect to soundness
and completeness of the underlying inference procedure. Assuming that sound-
ness and completeness is an indispensable requirement for knowledge-based ap-
plications — of which we think it is — many of the existing benchmark results
are not helpful at all. Some of our randomly selected tests showed that even
systems assumed to implement a sound and complete calculus fail on a number
of OWL Lite test cases.

Our overall goal is to qualitatively analyze various benchmark suites and re-
sults in order to identify requirements for a comprehensive benchmark suite suit-
able to allow ontology-based application developers to pick the right system for
their individual task. In the following section, we compare alternative reasoning
approaches. We then (Section 3) analyze existing benchmark suites, discuss corre-
sponding results and compare them with our own tests. As a result we compiled a
collection of requirements (Section 4) to make future benchmarks more useful for
application developers. Section 5 summarizes our experiences and suggestions.
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2 System Analysis

Understanding and interpreting benchmarking results correctly requires to have
some insights into alternative processing methods of different system implemen-
tations. In the context of reasoning with OWL, or fractions thereof, one can
roughly distinguish between four different approaches.

Due to its historical origins the inference calculus implemented in tableaux-
based provers for DLs is an obvious choice and available via systems like Pellet
[8], RacerPro [9], or FaCT++ [10]. They implement a conceptually sound as well
as complete approach for which many optimizations are known so far. Unfor-
tunately, complete instance reasoning still requires expensive computations but
recent research on elaborated reduction methods [11] show enormous optimiza-
tion possibilities in this respect.

An alternative, equally sound and complete, approach is to transform an OWL
ontology into a disjunctive datalog program and to utilize a disjunctive dat-
alog engine for reasoning as implemented in KAON2 [12]. This allows for fast
query answering due to well-known optimization techniques from deductive data-
bases such as magic set transformation. A drawback is that this approach does
not support nominals and has some performance problems with cardinality re-
strictions in presence of certain other axioms.

Other systems like OWLIM [13] or OWLJessKB use a standard rule engine
to reason with OWL. This is fast and easily tunable to different language frag-
ments just by manipulation the rule set. However, this procedure is known to be
incomplete and resource consumptive when filled with large amounts of implicit
knowledge because of their materialization strategy.

A couple of more or less hybrid approaches such as QuOnto [14], Minerva
[15], Instance Store [16], or LAS [17] combine an external reasoner (often a
tableaux-based system) with a Database system. This enables to process large
data volumes due to secondary storage mechanisms. On the other hand, this
combination only allows for a very limited language expressivity.

3 Benchmarking Experiences

This section tries to roughly draw a picture of practically tractable OWL repos-
itories with current reasoning systems. This is done by gathering data from
different existing as well as own benchmarks. The collected results are reviewed
with respect to the system, i. e. the underlying approach, as well as the kind of
test ontologies.

A common benchmark for today’s DL reasoners is to measure the performance
in processing huge ontologies. Ontologies with relatively small and inexpressive
TBoxes and ABoxes containing hundreds of thousands or even millions of in-
dividuals and relations are predominantly used in benchmarking tests. It is as-
sumed that real world applications will also exhibit the described characteristics.
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A selection of such “real world ontologies” (e.g. Gene Ontology1 or Airport Codes
Ontology2) which are used for benchmarking can be found in [18].

Nowadays, the Lehigh University Benchmark (LUBM) is the de facto standard
when it comes to reasoning with large ontologies [3,19,8,20,21]. But as mentioned
before, many reasoners that achieved excellent results when benchmarked with
LUBM, failed to reason about other ABox or TBox tests (cf. results for OWLIM
and KAON2 from Sections 3.1 and 3.2).

The University Ontology Benchmark (UOBM) [4], extends the LUBM by
adding extra TBox axioms making use of all of OWL Lite (UOBM Lite) and
OWL DL (UOBM DL). In addition, the ABox is enriched by interrelations be-
tween individuals of formerly separated units, which then requires ABox rea-
soning to answer the given UOBM queries. Not surprisingly, it turned out that
incomplete systems now can only answer a fraction even of the OWL Lite queries
completely. Only one theoretically sound and complete approach, namely Pel-
let [8], was able to handle about a tenth of the number of individuals compared
to the LUBM. The others failed either due to a timeout or the lack of memory.

These shortcomings motivated us to experiment with a set of tests of a dif-
ferent kind using both existing and newly created benchmarks. In the following,
we will present some of these measurements, whereas the aim of these tests was
not to simply nominate the fastest or most reliable reasoner. Also, instead of
overloading this report with a complete set of all of our measurements we will
highlight some results that demonstrate the necessity and requirements for a
comprehensive benchmark that goes beyond the LUBM.

In the following, we will present selected results for KAON2 (built 05-12-
2005), Pellet 1.3, OWLIM 2.8.3, and RacerPro 1.9.0 which were selected from
three out of four different reasoning approaches mentioned in Section 2. FaCT++
was dropped due to a missing query language and all hybrid systems were not
appropriate because of their limited language expressivity. We divided the whole
process of loading an ontology, any preprocessing as applicable and processing
of a query into two separate measurement stages:

Loading and preprocessing the ontology. This stage summarizes the mea-
surements for the process of feeding the ontology into the reasoner and any
parsing as required by the interface. Also any preprocessing that is either
done automatically or can be started manually is included into this mea-
sure. For most of the benchmarks presented in this report this measurement
is dominated by the time needed to load the ABox as TBoxes tend to be
very small and incomplex.

Query processing. This stage measures the time and resources needed to
process a given query and for some systems might also include preprocessing
efforts.

Loading of ontologies was repeated three times (discarding them after the first two
passes, keeping them after the third). Then the respective queries were repeated

1 http://archive.godatabase.org/
2 http://www.daml.ri.cmu.edu/ont/AirportCodes.daml

http://archive.godatabase.org/
http://www.daml.ri.cmu.edu/ont/AirportCodes.daml
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ten times each. For both stages time and memory consumption were measured
and maximum, minimum, as well as average measurements were recorded. Subse-
quently the machine was rebooted after each test case. All diagrams in this report
show the average of three measurement turns as described above.

The benchmarking tests were conducted on a Windows XP Workstation (3.0
GHz Intel Pentium 3 Processor, 1 GB physical RAM). KAON2, OWLIM, and
Pellet were run in the same Java virtual machine (JVM) as the benchmarking
application itself. RacerPro was running in a separate process and was connected
using JRacer3. For all systems the JVM was set to initial and maximum heap
size of 700 MB.

3.1 Starting Point: Existing ABox Benchmarks

Figure 1 shows the time needed to load different ontologies from LUBM. While
RacerPro shows the worst performance and Pellet not being able to load the
largest ontology, KAON2 turned out to be the fastest system directly followed
by OWLIM. These two systems show a linear relationship between ontology size
and load time.
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Fig. 1. Comparing LUBM load times for KAON2, Pellet, OWLIM, and RacerPro

We compared these results with the Semintec Benchmark which is based on
a benchmark suggested by [20]4. The Semintec ontology5 consists of an even
simpler TBox that even does not contain existential quantifiers or disjunctions.
3 http://www.racer-systems.com/products/download/nativelibraries.phtml
4 We only used the second of the two queries suggested in [20] since the concept Person

(referenced in query one) is not present in the ontology.
5 The Semintec ontology was originally created by the Semintec project:
http://www.cs.put.poznan.pl/alawrynowicz/semintec.htm

http://www.racer-systems.com/products/download/nativelibraries.phtml
http://www.cs.put.poznan.pl/alawrynowicz/semintec.htm
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Fig. 2. Semintec Benchmark load times for KAON2, RacerPro, and OWLIM

Again we measured a somewhat linear relationship between the size of the
ontology and the loading time for the named systems (cf. Figure 2). But we
also noticed that RacerPro is only marginally slower than the other systems,
in contrast to the LUBM. It seems that the lower expressivity also reduces the
complexity of index creation during preprocessing.

3.2 Implicit Knowledge - A Stumbling Block?

The results from LUBM and the Semintec Benchmark were in general unspec-
tacular, even though the small difference between the benchmarks could not be
explained definitely. Thus we designed a Benchmark consisting of a very simple
TBox for the next tests.

The TBox of the so called “Exquant Benchmark” consists of a transitive
property and a concept defined as existential quantification upon this transitive
property (someValueFrom restriction). The ABox consists of a chain of individu-
als related via the transitive property. This individual chain is of different length
for every ontology in the benchmark, where 100.000 instances marks the maxi-
mum length. The query collects the extension of the restriction. The layout of
this benchmark reflects one aspect of the social network ontology (part of our
application scenario), which heavily uses transitive properties.

Suddenly, the picture changes. OWLIM, performing very well for LUBM and
Semintec, is unable to load an ontology consisting of a chain of 1.000 individ-
uals linked by a transitive property (all tests interrupted after 1 hour). In con-
trast RacerPro and KAON2 never needed longer than 3.5 seconds. Obviously
OWLIM’s total forward chaining and materialization approach to compute all
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implicit knowledge on loading the ontology causes this performance deficit6. In
the Exquant Benchmark the amount of implicit knowledge grows quadratic with
the size of the ontology.

This also influences KAON2. Even though the system performs slightly better
than RacerPro on loading the ontology, KAON2 was unable to answer the men-
tioned query, even for some of the smallest ontologies (a 500 element individual
chain) within the given time limit of 10 minutes.

3.3 Influence of Serialization

Our next benchmark (the List Benchmark) consists of head|tail lists modeled in
OWL. The biggest ontology contains a list of 100.000 elements. All ontologies in
this benchmark are present in two different OWL serializations. One serialization
follows a “flat” approach in the sense that all list elements are defined one after
the other, referencing their respective tail. In the alternative “deeply nested”
serialization, list elements are defined at the place where they are used.

An interesting result, when processing the list benchmark was that RacerPro
is sensitive to the OWL serialization of the ontology loaded. We found that Rac-
erPro easily loads the flat serialization of the List Benchmark, while the system
fails to load deeply nested serializations with more then 6.400 list elements.

This emphasizes that reasoners should not be reduced to the performance
of their core reasoning component when selecting a system for an application.
Weaknesses might appear at unexpected places.

3.4 TBox Complexity

We are convinced that an ABox benchmark can not be conducted without scaling
the TBox size, too. Inevitably this will also increase TBox reasoning complexity
which again might influence ABox reasoning performance. Thus as a first test set
we created the Unions Benchmark which checks the influence of TBox complexity
on ABox reasoning. The benchmark primarily consists of a set of ontologies with
gradually increasing TBox complexity. For every TBox, a set of ontologies with
a growing number of ABox individuals is created.

The different TBoxes all consist of a concept hierarchy tree, in which every
concept (except for leaf concepts) is defined as a union of further concepts mod-
eled the same way. The TBox size is controlled by the number of concepts per
union and the depth of the hierarchy tree. We then scale the size of the ABoxes
by instantiating different amounts of individuals per concept. The query col-
lects the extension of the root concept of the concept hierarchy, representing the
superset of all ABox individuals.

Once again different reasoning techniques show different performance charac-
teristics in this benchmark. While RacerPro’s performance when querying the
Unions Benchmark seems to solely depend on the size of the ABox, KAON2
mainly depends on the complexity of the TBox. Figures 3 and 4 depict these
findings (pls. observe the direction of the level curves on the base of the graphs).
6 Reportedly OWLIM v2.8.5 will feature optimized handling of transitive properties.
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Fig. 3. RacerPro’s query times for Unions Benchmark

In an additional test we introduced TBox Axioms irrelevant for the actual
reasoning task. We suspected that some reasoners might switch off some op-
timizations in the presence of TBox axioms of higher complexity. Initial tests
suggest that we were too censoriously regarding this assumption as we could not
measure any differences.

3.5 Query Repetition and Query Specialization

We introduced the Query Specializing Benchmark to determine whether reason-
ers do profit from previously calculated results or not. If so, the executing of a
specialization of a previous query would perform better than the execution of
the specialized query alone.

We defined a set of five queries in selecting publications and their respective
authors from the LUBM ontologies. Thereby, we restricted the possible authors
from Person over Faculty, and Professor to FullProfessor. The last query
additionally restricted the possible authors to FullProfessors working for a
given department. The queries were processed against a “3 universities” ontology
from most specific to most general and vice versa.

Unfortunately, we were not able to measure any significant speed up in com-
parison to the independent execution of the queries. Curious enough we were
even unable to measure effects for RacerPro using its “query repository” [22]
which is designed to make use of previously calculated answers.

Even if the same query is repeated several times, the query times do not nec-
essarily decrease after the first execution. Considering all measurements we were
not able to detect a significant speed up for KAON2 and only minor improve-
ments (under 15%) for Pellet and RacerPro without query repository. OWLIM
saved approximately one third of the initial query time, while the biggest speed



304 T. Weithöner et al.

 0  1  2  3  4  5  6  7  8  0
 10

 20
 30

 40
 50

 60
 70

 80

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

Duration [s]

      80 s
      60 s
      40 s
      20 s

TBox Size [1000 Concepts]

ABox Sizes [1000 Instances]

Duration [s]

Fig. 4. KAON2’s query times for Unions Benchmark

up was measured for RacerPro with activated query repository. Only in this
configuration, repeated query executions in average were seven times faster com-
pared to the first execution.

3.6 Dynamic Behavior

Existing performance results of DL reasoners are often limited to the classi-
fication of static ontologies. However, in the case of frequent updates (a KB
submission, discarding, and re-submission cycle) the communication overhead
introduced on loading the ontology can easily dominate the overall performance.
In this respect, the delay caused by ontology-based inferencing easily becomes
a major obstacle for its use in context-aware applications [23]. One approach to
realize high-level situational reasoning for this type of application is to apply
dynamic assertional classification of situation descriptions represented as con-
crete ABox individuals. Each situation individual is assembled of a set of ABox
entities representing qualitative context information such as the location (e.g.,
office), the time (e.g., afternoon) and the persons in proximity (e.g., friends).
Finally, the direct subsuming concepts of the situation individual determine the
user’s abstract situation. The whole process of determining the situation of a
user (including the gathering and transformation of the relevant context data)
is limited to about 2 seconds per classification. Retraction improves the perfor-
mance for this type of application drastically, since only a small fraction of the
ontology changes between two requests.

The standard DL interface DIG 1.1 [6] does not support the removal of specific
axioms, making it necessary to re-submit the complete ontology for each request.
As active members of the informal DIG 2.0 working group7 we therefore propose
7 http://dig.cs.manchester.ac.uk/

http://dig.cs.manchester.ac.uk/
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a modular extension to the interface that supports incremental reasoning and
retraction [24]. Unfortunately, current reasoners only provide some kind of batch-
oriented reasoning procedure. A notable exception is RacerPro, which offers low-
level retraction support for most of its statements.

We compared different retraction strategies implemented in Racer. Reloading
of ontologies from a local Web server can be accelerated by either loading from
a image file (up to 3 times faster) or by cloning an ontology in memory (up
to 70 times faster). For small ABoxes, cloning the ontology outperformed even
the retraction of single axioms with forget statements (usually 80 times faster).
However, it turned out that the fastest strategy was to keep situation individuals
up to a certain number (about 20 in our case) within the ABox before cloning a
fresh pre-loaded ABox.8 Due to the lack of incremental classification algorithms,
RacerPro still initiates a complete reclassification after each change in the on-
tology. Initial empirical results from [7], performed with an experimental version
of Pellet, indicate that such algorithms for SHOIN (D) can be quite effective.

Without retraction support, the time needed to compute simple reasoning
problems, is easily dominated by the communication overhead caused by the
reasoner interface. For example, accessing RacerPro via its native API using
TCP is about 1,5 times faster then via HTTP/DIG and even 2 times faster
than the access realized with the triple-oriented framework Jena2 [25]. The best
performance can be achieved by using the Pellet reasoner running in the same
Java virtual machine as the application itself, this way without the need for any
external communication.

Another problematic issue we observed was that some reasoners tend to allo-
cate more and more memory over time. This leads to a considerable decrease in
performance and makes it necessary to restart the reasoning component after a
certain amount of transactions.

3.7 Completeness Versus Performance

Reasoning with OWL Lite as well as OWL DL is known to be of high worst-case
complexity. By using the “right” combination of costly expressions, one can in-
tentionally or incidentally create even a very small ontology whose complexity
will make practical reasoning impossible. Therefore, in case of taking the whole
vision of the Semantic Web literally as the domain for reasoning-aware applica-
tions, one obviously has to give up soundness and completeness [26]. However,
besides some preliminary empirical evaluation [27], there are currently no at-
tempts to reason with all ontologies found on the Web in parallel. Instead, when
assuming the currently more realistic application range in which applications
need to reason about information represented via distributed ontologies, sound-
ness and completeness typically do matter. It seems very unlikely that users of
large scale ontologies in the context of industrial or scientific research such as
SWEET or GO, or defense critical approaches such as the “Profiles in Terror”

8 Keeping individuals and axioms in the ABox is only possible if they do not influence
later classifications.
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ontology will accept incomplete reasoning results. Note that in the presence of
full negation, as in OWL, one can not really distinguish between completeness
and correctness anymore. Because the answers you miss due to incompleteness
will be your incorrect answers of the complementary problem.

As a consequence we tested our systems with help of an empirical evalua-
tion using spot tests which are intentionally designed to be hard to solve but
small in size. They try to meter the correctness of the reasoning engines with
respect to inference problems of selected language features.9 Surprisingly, only
RacerPro and KAON2 were able to solve those tests which lay within the lan-
guage fragment (above ALC) they claim to support. Others such as Pellet and
FaCT++ even failed on some OWL Lite test cases (not to mention OWLIM and
related systems). Besides this semantical errors we also found a couple of parsing
problems. For instance, all of the systems failed to parse either an empty inter-
section, union, or enumeration via XML/RDF or DIG 1.1. We also experienced
that there is an unpredictable scatter of runtime from case to case even within
one system implementation. Actually we discovered random runtime behavior
for Pellet for one test case ranging from less than a second up to effectively
non-termination. Finally, an expressive all-embracing test case with less than 50
classes and individuals overextended almost all systems.

The discovered failures have been communicated to the system developers and
a more detailed description of our test suite can be found at [29].

In addition, we found out that the given answer sets of UOBM are wrong in
the DL part of the benchmark suite. Their approach of importing all statements
into a RDBMS and manually build SQL queries for answer set computing failed
for query 11 with five universities for example. The presumably correct number of
answers is 6230 (as opposed to the official 6225) and was computed by Pellet. At
least the additional retrieved individuals from Pellet represent correct answers.
This can easily be seen by manually collecting the information which makes
them a legal candidate. As far as we see the official result set does not take into
account that isHeadOf is an inverse functional property.

4 Requirements for a Comprehensive ABox Benchmark

In the above sections we demonstrated the impact of some important influencing
factors neglected by today’s standard ABox benchmarks. This weakness renders
the named benchmarks useless when choosing a reasoner for a real-world ap-
plication. We thus suggest to build future benchmarks along the lines of the
following requirements.

R1 Separate measurements should be taken for each processing stage (loading
and querying) as described in Section 3.

R2 The benchmark should investigate query performance when processing a set
of ontologies with gradually growing ABoxes while size and complexity of

9 Very similar to the system evaluation of [28] and the system comparisons conducted
at various DL workshops.
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the TBox remains constant. It must thereby be ensured that the ABox can’t
be split into disjoint and unconnected parts.

R3 The benchmark should also pinpoint the influence of TBox complexity on
ABox reasoning. Thus TBox complexity should gradually be increased. In
one setting this increase in complexity should influence the ABox reasoning
task while in a separate setting TBox axioms which are unrelated to the ac-
tual benchmark should be added. The second setting is to trick the reasoner
into switching off optimizations even if this would not have been necessary
for the actual reasoning task.

R4 Include benchmarks, that comprise TBoxes modeled in a way such that
adding explicit knowledge to the ABox also adds large quantities of implicit
knowledge (e.g. transitive properties). This is to reveal the possibly negative
influences of materialization approaches or maintenance of index structures.

R5 OWL allows for different serializations of the same ontology. The benchmark
should check the influence of different serializations on the process of loading
these ontologies. A well implemented reasoner should be agnostic to such
differences.

R6 A reasoner with well implemented query caching should answer a repetition,
a specialization, or a sub query of a previous query almost instantly. Thus
tests should be included which disclose the reasoners capabilities with respect
to query caching.

R7 Most reasoners support different interfaces, like a proprietary API and a
DIG interface. Since these interfaces might exhibit different performance the
benchmark should compare loading and processing of ontologies through the
varying interfaces. Clearly results from this benchmark can be disregarded
if only very time consuming reasoning tasks are triggered. In such cases the
communication overhead is negligible.

R8 Real world applications will be subject of constant change. These changes
will appear most frequently in the ABox. Thus additional benchmarks should
be available measuring the performance of ABox modifications like addition
or retraction of axioms and the time required for subsequent reasoning tasks.

A future comprehensive ABox benchmark should consist of a set of special-
ized benchmarks tackling a variety of different requirements. Though, we won’t
suggest to define a procedure to reduce the various results of the different bench-
marks to a single metric (as done in [2]). Because, we do not believe that a single
score would be of any help when selecting a reasoner for a particular application
scenario. For instance, consider the case where two reasoners claim to support
the same expressivity but one of them is not sound/incomplete. Then, strictly
speaking, they are not comparable at all. Therefore, as a kind of meta require-
ment, comparisons should carefully interpret all measured results with respect
to the different underlying approaches and their theoretical properties.

From a practical point of view, it is advisable to analyze the specific require-
ment of the planned application and then choose the relevant benchmarks for
comparison of potential reasoners. In this respect a set of special purpose bench-
marks will be of great help. As a starting point we compiled Table 1, that lists
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Table 1. Requirements covered by the benchmarks presented in this paper

Benchmark Description Meets
Requirements

LUBM The original Lehigh University benchmark R2

UOBM Extended LUBM which introduces an OWL Lite
and an OWL DL Version of the benchmark

R2,
R3 partially

Semintec Based on a real-word TBox, modeling the finan-
cial domain. ABox size is increased in five steps.

R2

List Synthetic ontology modeling a head|tail list in
OWL. Amount of implicit knowledge rises expo-
nentially with the number of list elements.

R2, R4, R5

Exquant Another synthetic ontology heavily using transi-
tive property instances.

R2, R4

Unions Benchmark that increases ABox size as well as
TBox complexity

R2, R4, R5,
R3 partially

Query
Specializing

Based on LUBM. Consists of increasingly special-
ized queries. Checks for query caching capabilities.

R2, R6

the benchmarks presented in this paper together with the covered requirements
(requirements R0 and R1 are not mentioned there as they are independent of
the concrete benchmark).

5 Summary

We showed that today’s ABox benchmarks fall short on providing comprehensive
and meaningful information in order to support users in selecting a reasoner
for real world applications. We highlighted and discussed some benchmarking
results gained from well known as well as newly created benchmarks. These
benchmarks cover traditional aspects like ABox size but also measure influences
due to ontology serialization, TBox complexity, query caching, and dynamic
ontology changes. The results clearly show that there is still no single benchmark
suite which covers all of the issues above and that there is no reasoner able to
deal with large and complex ABoxes in a robust manner. As a consequence we
suggest a set of general benchmarking requirements which will be helpful when
designing future OWL reasoner benchmarking suites.
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