Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 720))

Abstract

Recent astrophysical observations, pertaining to either high-redshift supernovae or cosmic microwave background temperature fluctuations, as those measured recently by the WMAP satellite, provide us with data of unprecedented accuracy, pointing towards two (related) facts: (i) our Universe is accelerated at present, and (ii) more than 70% of its energy content consists of an unknown substance, termed dark energy, which is believed responsible for its current acceleration. Both of these facts are a challenge to String theory. In this review I outline briefly the challenges, the problems and possible avenues for research towards a resolution of the Dark Energy issue in string theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Perlmutter et al., Astrophys. J 483, 565 (1997); A.G. Riess et al., Astron. J. 116, 1009 (1998); B.P. Schmidt et al., Astrophys. J 507, 46 (1998); P.M. Garnavich et al., Astrophys. J 509, 74 (1998); S. Perlmutter et al., Astrophys. J 517, 565 (1999).

    Google Scholar 

  2. C.L. Bennett et al., Astrophys.; J. Suppl. 148, 1, (2003), [ arXiv:astro-ph/0302207]; D.N. Spergel et al., Astrophys. J. Suppl. 148, 175, (2003) [arXiv:astro-ph/0302209].

    Google Scholar 

  3. See, for instance, N.E. Mavromatos, Proc. First Aegean Summer School on Cosmology Cosmological Crossroads (S. Cotsakis, E. Papantonopoulos eds.), Lect. Notes Phys. 592, ISBN 3-540-43778-9.

    Google Scholar 

  4. M.B. Green, J.H. Schwarz and E. Witten, Superstring Theory, Vols. I and II (Cambridge University Press, Cambridge 1987).

    Google Scholar 

  5. T. Banks and W. Fischler, hep-th/0102077; S. Hellerman, N. Kaloper and L. Susskind, hep-th/0104180; W. Fischler, A. Kashani-Poor, R. McNees and S. Paban, hep-th/0104181; E. Witten, hep-th/0106109; P.O. Mazur, E. Mottola, Phys. Rev. D64, 104022 (2001), and references therein; J. Ellis, N.E. Mavromatos and D.V. Nanopoulos, hep-th/0105206.

    Google Scholar 

  6. For concise recent reviews see: P.J. Steinhardt, Phys. Scripta T 85, 177 (2000), and references therein; M. Trodden and S.M. Carroll, TASI lectures: Introduction to cosmology, [arXiv:astro-ph/0401547].

    Google Scholar 

  7. J.M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998) [Int. J. Theor. Phys. 38, 1113 (1999)] [arXiv:hep-th/9711200].

    Google Scholar 

  8. A. Strominger, JHEP 0110, 034 (2001) [arXiv:hep-th/0106113]. M. Spradlin, A. Strominger and A. Volovich, Les Houches lectures on de Sitter space, and references therein. [arXiv:hep-th/0110007].

    Google Scholar 

  9. F. David, Modern Physics Letters A 3, 1651 (1988); J. Distler and H. Kawai, Nucl. Phys. B 321, 509 (1989); see also: N.E. Mavromatos and J.L. Miramontes, Mod. Phys. Lett. A4, 1847 (1989); E. D’Hoker and P.S. Kurzepa, Mod. Phys. Lett. A5, 1411 (1990).

    Google Scholar 

  10. J.R. Ellis, N.E. Mavromatos and D.V. Nanopoulos, Phys. Lett. B293, 37 (1992) [arXiv:hep-th/9207103]; Mod. Phys. Lett. A10, 1685 (1995) [arXiv:hep-th/9503162]. Invited review for the special Issue of J. Chaos Solitons Fractals, Vol. 10, (eds. C. Castro amd M.S. El Naschie, Elsevier Science, Pergamon 1999) 345 [arXiv:hep-th/9805120]; J.R. Ellis, N.E. Mavromatos and D.V. Nanopoulos, Gen. Rel. Grav. 37, 1665 (2005) [arXiv:gr-qc/0503120].

    Google Scholar 

  11. J. Polchinski, Phys. Rev. Lett. 75, 4724 (1995); TASI lectures on D-branes, hep-th/9611050; M.J. Duff, Sci. Am. 278, 64 (1998).

    Google Scholar 

  12. D. Langlois, Prog. Theor. Phys. Suppl. 148, 181 (2003) [arXiv:hep-th/0209261] and references therein. P. Binetruy, C. Deffayet and D. Langlois, Nucl. Phys. B565, 269 (2000) [ arXiv: hep-th/9905012]; P. Binetruy, C. Deffayet, U. Ellwanger and D. Langlois, Physics Letters B477, 285 (2000) [ arXiv: hep-th/9910219]; A. Kehagias and E. Kiritsis, JHEP 9911, 022 (1999) [arXiv:hep-th/9910174].

    Google Scholar 

  13. M. Gasperini and G. Veneziano, Phys. Rept. 373, 1 (2003) [arXiv:hep-th/0207130]; M. Gasperini, F. Piazza and G. Veneziano, Phys. Rev. D65, 023508 (2002) [arXiv:gr-qc/0108016].

    Google Scholar 

  14. G.A. Diamandis, B.C. Georgalas, N.E. Mavromatos and E. Papantonopoulos, Int. J. Mod. Phys. A17, 4567 (2002) [arXiv:hep-th/0203241]; G.A. Diamandis, B.C. Georgalas, N.E. Mavromatos, E. Papantonopoulos and I. Pappa, Int. J. Mod. Phys. A 17, 2241 (2002) [arXiv:hep-th/0107124].

    Google Scholar 

  15. J.D. Bekenstein, Phys. Rev. D7, 2333 (1973).

    Google Scholar 

  16. S.W. Hawking, Commun. Math. Phys. 43, 199 (1975) [Erratum-ibid. 46, 206 (1976)].

    Google Scholar 

  17. M. Srednicki, Phys. Rev. Lett. 71, 666 (1993) [arXiv:hep-th/9303048].

    Google Scholar 

  18. For the most recent result on this issue see: P. Berglund, E.G. Gimon and T.S. Levi, arXiv:hep-th/0505167, and references therein.

    Google Scholar 

  19. G.W. Gibbons and S.W. Hawking, Phys. Rev. D15, 2738 (1977).

    Google Scholar 

  20. R.M. Wald, Phys. Rev. D21, 2742 (1980).

    Google Scholar 

  21. N.E. Mavromatos, Lect. Notes Phys. 669, 245 (2005) [arXiv:gr-qc/0407005] and references therein.

    Google Scholar 

  22. W. Fischler and L. Susskind, [arXiv:hep-th/9806039].

    Google Scholar 

  23. S.W. Hawking, Phys. Rev. D72, 084013 (2005) [arXiv:hep-th/0507171].

    Google Scholar 

  24. M. Dine and M. Graesser, JHEP 0501, 038 (2005) [arXiv:hep-th/0409209].

    Google Scholar 

  25. T. Banks and M. Dine, JHEP 0110, 012 (2001) [arXiv:hep-th/0106276].

    Google Scholar 

  26. W. Fischler and L. Susskind, Phys. Lett. B173, 262 (1986); Phys. Lett. B171, 383 (1986).

    Google Scholar 

  27. I. Antoniadis, C. Bachas, J.R. Ellis and D.V. Nanopoulos, Phys. Lett. B211, 393 (1988); Nucl. Phys. B328, 117 (1989); Phys. Lett. B 257, 278 (1991).

    Google Scholar 

  28. A.B. Zamolodchikov, JETP Lett. 43, 730 (1986) [Pisma Zh. Eksp. Teor. Fiz. 43, 565 (1986)].

    Google Scholar 

  29. E. Witten, Int. J. Mod. Phys. A10, 1247 (1995) [arXiv:hep-th/9409111].

    Google Scholar 

  30. E. Gravanis and N.E. Mavromatos, Phys. Lett. B547, 117 (2002) [arXiv:hep-th/0205298];N.E. Mavromatos, arXiv:hep-th/0210079 (published in Beyond the Desert, Oulu 2002 (Finland) (ed. H.V. Klapdor-Kleingrothaus,IoP 2003)), 3.

    Google Scholar 

  31. F. Pardo, J. Math. Phys. 30, 2054 (1989); S. Hojman and C. Shepley, J. Math. Phys. 32, 142 (1991); in the Liouville-strings context see: N.E. Mavromatos and R.J. Szabo, Phys. Rev. D59, 104018 (1999) [arXiv:hep-th/9808124].

    Google Scholar 

  32. C. Schmidhuber and A.A. Tseytlin, Nucl. Phys. B426, 187 (1994) [arXiv:hep-th/9404180].

    Google Scholar 

  33. I.I. Kogan, N.E. Mavromatos and J.F. Wheater, Phys. Lett. B387, 483 (1996) [arXiv:hep-th/9606102]; for a supersymmetric world-sheet recoil formulation see: N.E. Mavromatos and R.J. Szabo, JHEP 0110, 027 (2001) [arXiv:hep-th/0106259]; JHEP 0301, 041 (2003) [arXiv:hep-th/0207273].

    Google Scholar 

  34. C. Bachas,[arXiv:hep-th/9503030].

    Google Scholar 

  35. J. Ellis, N.E. Mavromatos, D.V. Nanopoulos and A. Sakharov,arXiv:gr-qc/0407089, New J. Phys. 6, 171 (2004).

    Google Scholar 

  36. J.R. Ellis, N.E. Mavromatos and D.V. Nanopoulos, Phys. Lett. B619, 17 (2005) [arXiv:hep-th/0412240] and J.R. Ellis, N.E. Mavromatos, D.V. Nanopoulos and M. Westmuckett, Int. J. Mod. Phys. A 21, 1379 (2006) [arXiv:gr-qc/0508105]; G.A. Diamandis, B.C. Georgalas, A.B. Lahanas, N.E. Mavromatos and D.V. Nanopoulos, [arXiv:hep-th/0605181].

    Google Scholar 

  37. A.B. Lahanas, N.E. Mavromatos and D.V. Nanopoulos, [arXiv:hep-ph/0608153].

    Google Scholar 

  38. see for instance: E.W. Kolb and M.S. Turner, The Early universe, Front. Phys. 69 (Redwood City, USA: Addison-Wesley 1990).

    Google Scholar 

  39. I. Antoniadis, J. Rizos and K. Tamvakis, Nucl. Phys. B415, 497 (1994) [arXiv:hep-th/9305025].

    Google Scholar 

  40. P. Kanti, N.E. Mavromatos, J.Rizos, K. Tamvakis and E. Winstanley, Phys. Rev. D54, 5049 (1996) [arXiv:hep-th/9511071].

    Google Scholar 

  41. N.E. Mavromatos and E. Papantonopoulos, Phys. Rev. D73, 026001 (2006) [arXiv:hep-th/0503243] and references therein.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mavromatos, N. (2007). The Issue of Dark Energy in String Theory. In: Papantonopoulos, L. (eds) The Invisible Universe: Dark Matter and Dark Energy. Lecture Notes in Physics, vol 720. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71013-4_12

Download citation

Publish with us

Policies and ethics