Skip to main content

Dynamics of a Neuromodulator – II. Dopaminergic Balance and Cognition

  • Chapter
From Attention to Goal-Directed Behavior

Dopamine (DA) strongly modulates the activity of neuronal ensembles in the prefrontal cortex. Activity of D1-like receptors, produced by phasic DA release, produces a net depressing effect by stimulating inhibitory interneurons, while on the other hand it enhances the activity levels of pyramidal cells that are strongly active. This produces an increase in the signal-to-noise ratio and contributes to the maintenance of behaviorally relevant circuits such as attentional systems and working memory ensembles. On the other hand, at much lower concentrations, D2-receptor-like activity produces a general disinhibition of cortical networks, favoring the maintenance of multiple representations and contributing to updating representations according to contextual changes. The balance between these two DA signaling systems is crucial, as failure to maintain the behavioral goal results in distractibility, while failure to update it with new sensory evidence results in perseverance. Thus, the mesencephalic DA system is a strong modulator of forebrain neurodynamics, both cortical and subcortical. A disbalance in the DA signaling systems might be one of the physiopathological mechanisms underlying neuropsychiatric disorders such as schizophrenia and attention deficit—hyperactivity disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abi-Dargham, A., Rodenhiser, J., Printz, D., Zea-Ponce, Y., Gil, R., Kegeles, L. S., et al. (2000).Increased baseline occupancy of D2 receptors by dopamine in schizophrenia.Proceedings of the National Academy of Sciences of the United States of America,97(14), 8104–8109

    Article  Google Scholar 

  • Aboitiz, F., Ló pez, V., López-Calderó n, J., & Carrasco, X. (2006). Beyond endophenotypes: An interdisciplinary approach to attentional deficit-hyperactivity disorder. In M. Vanchevsky (Ed.),Focus in cognitive psychology research(pp. 183–205). New York: Nova Science Publishers

    Google Scholar 

  • Akil, M., Pierri, J. N., Whitehead, R. E., Edgar, C. L., Mohila, C., Sampson, A. R., et al. (1999).Lamina-specific alterations in the dopamine innervation of the prefrontal cortex in schizophrenic subjects.Ameican Journal of Psychiatry,156(10), 1580–1589

    CAS  Google Scholar 

  • Angrist, B., & Sudilovsky, A. (1978). Central nervous system stimulants: Historical aspects and clinical effects. In L. L. Iversen (Ed.),Handbook of psychopharmacology(Vol. 11, pp. 99–165).New York: Plenum Press

    Google Scholar 

  • Arnsten, A. F. T. (2007). Catecholamine and second messenger influences on prefrontal cortical networks of “representational knowledge” A rational bridge between genetics and the symptoms of mental illness.Cerebral Cortex,17, i6–i15

    Article  PubMed  Google Scholar 

  • Barr, C. L., Wigg, K. G., Bloom, S., Schachar, R., Tannock, R., Roberts, W., et al. (2000). Further evidence from haplotype analysis for linkage of the dopamine D4 receptor gene and attention-deficit hyperactivity disorder.American Journal of Medical Genetics,96(3), 262–267

    Article  PubMed  CAS  Google Scholar 

  • Bergson, C., Mrzljak, L., Smiley, J. F., Pappy, M., Levenson, R., & Goldman-Rakic, P. S. (1995).Regional, cellular, and subcellular variations in the distribution of D1 and D5 dopamine receptors in primate brain.Journal of Neuroscience,15(12), 7821–7836

    PubMed  CAS  Google Scholar 

  • Biederman, J. (2005). Attention-deficit/hyperactivity disorder: A selective overview.Biological Psychiatry,57(11), 1215–1220

    Article  PubMed  Google Scholar 

  • Birkmayer, W., & Hornykiewicz, O. (1961). [The L-3,4-dioxyphenylalanine (DOPA)-effect in Parkinson-akinesia.].Wiener Klinische Wochenschrift,73, 787–788

    PubMed  CAS  Google Scholar 

  • Bjorklund, A., & Dunnett, S. B. (2007). Dopamine neuron systems in the brain: An update.Trends in Neuroscience,30(5), 194–202

    Article  CAS  Google Scholar 

  • Bratcher, N. A., Farmer-Dougan, V., Dougan, J. D., Heidenreich, B. A., & Garris, P. A. (2005). The role of dopamine in reinforcement: Changes in reinforcement sensitivity induced by D1-type,D2-type, and nonselective dopamine receptor agonists.Journal of Experimental Analysis of Behavior,84(3), 371–399

    Article  Google Scholar 

  • Brozoski, T. J., Brown, R. M., Rosvold, H. E., & Goldman, P. S. (1979). Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey.Science,205(4409),929–932

    Article  PubMed  CAS  Google Scholar 

  • Carlsson, A., & Lindqvist, M. (1963). Effect of chlorpromazine or haloperidol on formation of 3methoxytyramine and normetanephrine in mouse brain.Acta pharmacologica et toxicolog-ica,20, 140–144

    CAS  Google Scholar 

  • Carrasco, X., Rothhammer, P., Moraga, M., Henriquez, H., Chakraborty, R., Aboitiz, F., et al.(2006). Genotypic interaction between DRD4 and DAT1 loci is a high risk factor for attention-deficit/hyperactivity disorder in Chilean families.American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics,141(1), 51–54

    Article  Google Scholar 

  • Castellanos, F. X., Giedd, J. N., Elia, J., Marsh, W. L., Ritchie, G. F., Hamburger, S. D., et al.(1997). Controlled stimulant treatment of ADHD and comorbid Tourette's syndrome: Effects of stimulant and dose.Journal of the American Academy of Child & Adolescent Psychiatry,36(5), 589–596

    Article  CAS  Google Scholar 

  • Comings, D. E., Wu, S., Chiu, C., Ring, R. H., Gade, R., Ahn, C., et al. (1996). Polygenic inheritance of Tourette syndrome, stuttering, attention deficit hyperactivity, conduct, and oppositional defiant disorder: The additive and subtractive effect of the three dopaminergic genes—DRD2,D beta H, and DAT1. American Journal of Medical Genetics, 67(3), 264–288

    Article  PubMed  CAS  Google Scholar 

  • Cools, R., Lewis, S. J., Clark, L., Barker, R. A., & Robbins, T. W. (2007). L-DOPA disrupts activityi n the nucleus accumbens during reversal learning in Parkinson's disease.Neuropsychopharmacology,32(1), 180–189

    Article  PubMed  CAS  Google Scholar 

  • Crofts, H. S., Dalley, J. W., Collins, P., Van Denderen, J. C., Everitt, B. J., Robbins, T. W., et al.(2001). Differential effects of 6-OHDA lesions of the frontal cortex and caudate nucleus on the ability to acquire an attentional set.Cerebral Cortex,11(11), 1015–1026

    Article  PubMed  CAS  Google Scholar 

  • Childress, A. R., Mozley, P. D., McElgin, W., Fitzgerald, J., Reivich, M., & O'Brien, C. P. (1999).Limbic activation during cue-induced cocaine craving.Ameican Journal of Psychiatry,156(1),11–18

    CAS  Google Scholar 

  • Chudasama, Y., & Robbins, T. W. (2004). Dopaminergic modulation of visual attention and working memory in the rodent prefrontal cortex.Neuropsychopharmacology,29(9), 1628–1636

    Article  PubMed  CAS  Google Scholar 

  • DeLong, M. R. (1983). The neurophysiologic basis of abnormal movements in basal ganglia disorders.Neurobehavioral Toxicology and Teratology,5(6), 611–616

    Google Scholar 

  • Deng, P., Zhang, Y., & Xu, Z. C. (2007). Involvement of I(h) in dopamine modulation of tonic firing in striatal cholinergic interneurons.Journal of Neuroscience,27(12), 3148–3156

    Article  PubMed  CAS  Google Scholar 

  • Deutch, A. Y., Clark, W. A., & Roth, R. H. (1990). Prefrontal cortical dopamine depletion enhances the responsiveness of mesolimbic dopamine neurons to stress. .Brain Research,521(1–2), 311–315

    Article  PubMed  CAS  Google Scholar 

  • Diamond, A. (2007). Consequences of variations in genes that affect dopamine in prefrontal cortex.Cerebral Cortex,17, i161–i170

    Article  PubMed  Google Scholar 

  • Ding, Y. C., Chi, H. C., Grady, D. L., Morishima, A., Kidd, J. R., Kidd, K. K., et al. (2002).Evidence of positive selection acting at the human dopamine receptor D4 gene locus.Proceedings of the National Academy of Sciences of the United States of America,99(1),309–314

    Article  PubMed  CAS  Google Scholar 

  • Ehringer, H., & Hornykiewicz, O. (1960). [Distribution of noradrenaline and dopamine (3-hydrox-ytyramine) in the human brain and their behavior in diseases of the extrapyramidal system.].Klinische Wochenschrift,38, 1236–1239

    Article  PubMed  CAS  Google Scholar 

  • Floresco, S. B., & Phillips, A. G. (2001). Delay-dependent modulation of memory retrieval by infusion of a dopamine D1 agonist into the rat medial prefrontal cortex.Behavioral Neuroscience,115(4), 934–939

    Article  PubMed  CAS  Google Scholar 

  • Floresco, S. B., Todd, C. L., & Grace, A. A. (2001). Glutamatergic afferents from the hippocampus to the nucleus accumbens regulate activity of ventral tegmental area dopamine neurons.Journal of Neuroscience,21(13), 4915–4922

    PubMed  CAS  Google Scholar 

  • Floresco, S. B., & Tse, M. T. (2007). Dopaminergic regulation of inhibitory and excitatory transmission in the basolateral amygdala-prefrontal cortical pathway.Journal of Neuroscience,27(8), 2045–2057

    Article  PubMed  CAS  Google Scholar 

  • Foote, S. L., Aston-Jones, G., & Bloom, F. E. (1980). Impulse activity of locus coeruleus neurons in awake rats and monkeys is a function of sensory stimulation and arousal.Proceedings of the National Academy of Sciences of the United States of America,77(5), 3033–3037

    Article  PubMed  CAS  Google Scholar 

  • French, S. J., & Totterdell, S. (2002). Hippocampal and prefrontal cortical inputs monosynapti-cally converge with individual projection neurons of the nucleus accumbens.Journal of Comparative Neurology,446(2), 151–165

    Article  PubMed  Google Scholar 

  • French, S. J., & Totterdell, S. (2003). Individual nucleus accumbens-projection neurons receive both basolateral amygdala and ventral subicular afferents in rats.Neuroscience,119(1),19–31

    Article  PubMed  CAS  Google Scholar 

  • Freund, T. F. (2003). Interneuron Diversity series: Rhythm and mood in perisomatic inhibition.Trends in Neuroscience,26(9), 489–495

    Article  CAS  Google Scholar 

  • Fuster, J. M. (1995).Memory in the cerebral cortex. Cambridge, MA: MIT Press

    Google Scholar 

  • Gao, W. J., Krimer, L. S., & Goldman-Rakic, P. S. (2001). Presynaptic regulation of recurrent excitation by D1 receptors in prefrontal circuits.Proceedings of the National Academy of Sciences of the United States of America,98(1), 295–300

    Article  PubMed  CAS  Google Scholar 

  • Gao, W. J., Wang, Y., & Goldman-Rakic, P. S. (2003). Dopamine modulation of perisomatic and peridendritic inhibition in prefrontal cortex.Journal of Neuroscience,23(5), 1622–1630

    PubMed  CAS  Google Scholar 

  • Gaspar, P., Bloch, B., & Le Moine, C. (1995). D1 and D2 receptor gene expression in the rat frontal cortex: Cellular localization in different classes of efferent neurons.European Journal of Neuroscience,7(5), 1050–1063

    Article  PubMed  CAS  Google Scholar 

  • Goldberg, T. E., Egan, M. F., Gscheidle, T., Coppola, R., Weickert, T., Kolachana, B. S., et al.(2003). Executive subprocesses in working memory: Relationship to catechol-O-methyltrans-ferase Val158Met genotype and schizophrenia.Archives of General Psychiatry,60(9),889–896

    Article  PubMed  CAS  Google Scholar 

  • Goldman-Rakic, P. S. (1995a). Anatomical and functional circuits in prefrontal cortex of nonhu-man primates. Relevance to epilepsy.Advances in Neurology,66, 51–63; discussion 63–55

    CAS  Google Scholar 

  • Goldman-Rakic, P. S. (1995b). Architecture of the prefrontal cortex and the central executive.Annals of the New York Academy of Sciences,769, 71–83

    Article  CAS  Google Scholar 

  • Goldman-Rakic, P. S. (1996). Regional and cellular fractionation of working memory.Proceedings of the National Academy of Sciences of the United States of America,93(24), 13473–13480

    Article  PubMed  CAS  Google Scholar 

  • Goldman-Rakic, P. S., Lidow, M. S., Smiley, J. F., & Williams, M. S. (1992). The anatomy of dopamine in monkey and human prefrontal cortex.Journal of Neural Transmission Suppl,36,163–177

    CAS  Google Scholar 

  • Gorelova, N., Seamans, J. K., & Yang, C. R. (2002). Mechanisms of dopamine activation of fast-spiking interneurons that exert inhibition in rat prefrontal cortex.Journal of Neurophysiology,88(6), 3150–3166

    Article  PubMed  CAS  Google Scholar 

  • Gorelova, N. A., & Yang, C. R. (2000). Dopamine D1/D5 receptor activation modulates a persistent sodium current in rat prefrontal cortical neurons in vitro.Journal of Neurophysiology,84(1), 75–87

    PubMed  CAS  Google Scholar 

  • Gosal, D., Ross, O. A., & Toft, M. (2006). Parkinson&s disease: The genetics of a heterogeneous disorder.European Journal of Neurology,13(6), 616–627

    Article  PubMed  CAS  Google Scholar 

  • Goto, Y., & Grace, A. A. (2005a). Dopamine-dependent interactions between limbic and prefron-tal cortical plasticity in the nucleus accumbens: Disruption by cocaine sensitization.Neuron,47(2), 255–266

    Article  CAS  Google Scholar 

  • Goto, Y., & Grace, A. A. (2005b). Dopaminergic modulation of limbic and cortical drive of nucleus accumbens in goal-directed behavior.Nature Neuroscience,8(6), 805–812

    Article  CAS  Google Scholar 

  • Grace, A. A. (1991). Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: A hypothesis for the etiology of schizophrenia.Neuroscience,41(1), 1–24

    Article  PubMed  CAS  Google Scholar 

  • Grace, A. A. (1995). The tonic/phasic model of dopamine system regulation: Its relevance for understanding how stimulant abuse can alter basal ganglia function.Drug and Alcohol Dependence,37(2), 111–129

    Article  PubMed  CAS  Google Scholar 

  • Grace, A. A., Floresco, S. B., Goto, Y., & Lodge, D. J. (2007). Regulation of firing of dopaminer-gic neurons and control of goal-directed behaviors.Trends in Neuroscience,30(5), 220–227

    Article  CAS  Google Scholar 

  • Granon, S., Passetti, F., Thomas, K. L., Dalley, J. W., Everitt, B. J., & Robbins, T. W. (2000).Enhanced and impaired attentional performance after infusion of D1 dopaminergic receptor agents into rat prefrontal cortex.Journal of Neuroscience,20(3), 1208–1215

    PubMed  CAS  Google Scholar 

  • Hawi, Z., Lowe, N., Kirley, A., Gruenhage, F., Nothen, M., Greenwood, T., et al. (2003). Linkage disequilibrium mapping at DAT1, DRD5 and DBH narrows the search for ADHD susceptibility alleles at these loci.Molecular Psychiatry,8(3), 299–308

    Article  PubMed  CAS  Google Scholar 

  • Henze, D. A., Gonzalez-Burgos, G. R., Urban, N. N., Lewis, D. A., & Barrionuevo, G. (2000).Dopamine increases excitability of pyramidal neurons in primate prefrontal cortex.Journal of Neurophysiology,84(6), 2799–2809

    PubMed  CAS  Google Scholar 

  • Holmes, J., Payton, A., Barrett, J., Harrington, R., McGuffin, P., Owen, M., et al. (2002).Association of DRD4 in children with ADHD and comorbid conduct problems.American Journal of Medical Genetics,114(2), 150–153

    Article  PubMed  Google Scholar 

  • Ishizuka, K., Paek, M., Kamiya, A., & Sawa, A. (2006). A review of Disrupted-In-Schizophrenia-1 (DISC1): Neurodevelopment, cognition, and mental conditions.Biological Psychiatry,59(12), 1189–1197

    Article  PubMed  CAS  Google Scholar 

  • Iversen, L. (2006). Neurotransmitter transporters and their impact on the development of psychop-harmacology.British Journal of Pharmacology,147(Suppl 1), S82–88

    Article  PubMed  CAS  Google Scholar 

  • Iversen, S. D., & Iversen, L. L. (2007). Dopamine: 50 years in perspective.Trends in Neuroscience,30(5), 188–193

    Article  CAS  Google Scholar 

  • Khan, Z. U., Gutierrez, A., Martin, R., Penafiel, A., Rivera, A., & De La Calle, A. (1998).Differential regional and cellular distribution of dopamine D2-like receptors: An immunocy-tochemical study of subtype-specific antibodies in rat and human brain.Journal of Comparative Neurology,402(3), 353–371

    Article  PubMed  CAS  Google Scholar 

  • Krimer, L. S., Jakab, R. L., & Goldman-Rakic, P. S. (1997). Quantitative three-dimensional analysis of the catecholaminergic innervation of identified neurons in the macaque prefrontal cortex.Journal of Neuroscience,17(19), 7450–7461

    PubMed  CAS  Google Scholar 

  • Kritzer, M. F., & Goldman-Rakic, P. S. (1995). Intrinsic circuit organization of the major layers and sublayers of the dorsolateral prefrontal cortex in the rhesus monkey.Journal of Comparative Neurology,359(1), 131–143

    Article  PubMed  CAS  Google Scholar 

  • Kuntsi, J., & Stevenson, J. (2000). Hyperactivity in children: A focus on genetic research and psychological theories.Clinical Child Psychology and Psychiatry,3(1), 1–23

    CAS  Google Scholar 

  • Lange, K. W., Robbins, T. W., Mardsen, C. D., James, M., Owen, A. M., & Paul, G. M. (1992).L-Dopa withdrawal in Parkinson's disease selectively impairs cognitive performance in tests sensitive to frontal lobe dysfunction.Psychopharmacology,107(2–3), 394–404

    Article  PubMed  CAS  Google Scholar 

  • Lidow, M. S., Wang, F., Cao, Y., & Goldman-Rakic, P. S. (1998). Layer V neurons bear the majority of mRNAs encoding the five distinct dopamine receptor subtypes in the primate prefrontal cortex.Synapse,28(1), 10–20

    Article  PubMed  CAS  Google Scholar 

  • Lisman, J. E., & Grace, A. A. (2005). The hippocampal-VTA loop: Controlling the entry of information into long-term memory.Neuron,46(5), 703–713

    Article  PubMed  CAS  Google Scholar 

  • Lisman, J. E., Coyle, J. T., Green, R. W., Javitt, D. C., Benes, F. M., Heckers, S., & Grace, A. A.(2008). Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia. Trends in Neuroscience, 31(5), 234–242

    Article  CAS  Google Scholar 

  • Luthi, A., & McCormick, D. A. (1998). H-current: Properties of a neuronal and network pacemaker. Neuron, 21(1), 9–12

    Article  PubMed  CAS  Google Scholar 

  • Manor, I., Tyano, S., Eisenberg, J., Bachner-Melman, R., Kotler, M., & Ebstein, R. P. (2002). The short DRD4 repeats confer risk to attention deficit hyperactivity disorder in a family-based design and impair performance on a continuous performance test (TOVA). Molecular Psychiatry, 7(7), 790–794

    Article  PubMed  CAS  Google Scholar 

  • Matsuda, Y., Marzo, A., & Otani, S. (2006). The presence of background dopamine signal converts long-term synaptic depression to potentiation in rat prefrontal cortex. Journal of Neuroscience, 26(18), 4803–4810

    Article  PubMed  CAS  Google Scholar 

  • Mattay, V. S., Goldberg, T. E., Fera, F., Hariri, A. R., Tessitore, A., Egan, M. F., et al. (2003).Catechol O-methyltransferase val158-met genotype and individual variation in the brain response to amphetamine. Proceedings of the National Academy of Sciences of the UnitedStates of America, 100(10), 6186–6191

    Article  CAS  Google Scholar 

  • Matthysse, S. (1973). Antipsychotic drug actions: A clue to the neuropathology of schizophrenia?Federation Proceedings, 32(2), 200–205

    PubMed  CAS  Google Scholar 

  • Meador-Woodruff, J. H., Damask, S. P., Wang, J., Haroutunian, V., Davis, K. L., & Watson, S. J.(1996). Dopamine receptor mRNA expression in human striatum and neocortex.Neuropsychopharmacology, 15(1), 17–29

    Article  PubMed  CAS  Google Scholar 

  • Mehta, M. A., Owen, A. M., Sahakian, B. J., Mavaddat, N., Pickard, J. D., & Robbins, T. W.(2000). Methylphenidate enhances working memory by modulating discrete frontal and parietal lobe regions in the human brain. Journal of Neuroscience, 20(6), RC65

    PubMed  CAS  Google Scholar 

  • Missale, C., Nash, S. R., Robinson, S. W., Jaber, M., & Caron, M. G. (1998). Dopamine receptors:From structure to function. Physiological Reviews, 78(1), 189–225

    PubMed  CAS  Google Scholar 

  • Moore, K. E., & Gudelsky, G. A. (1977). Drug actions on dopamine turnover in the median eminence. Advances in Biochemical Psychopharmacology, 16, 227–235

    PubMed  CAS  Google Scholar 

  • Mrzljak, L., Bergson, C., Pappy, M., Huff, R., Levenson, R., & Goldman-Rakic, P. S. (1996).Localization of dopamine D4 receptors in GABAergic neurons of the primate brain. Nature,381(6579), 245–248

    Article  PubMed  CAS  Google Scholar 

  • Muglia, P., Jain, U., Macciardi, F., & Kennedy, J. L. (2000). Adult attention deficit hyperactivity disorder and the dopamine D4 receptor gene. American Journal of Medical Genetics, 96(3),273–277

    Article  PubMed  CAS  Google Scholar 

  • Muly, E. C., 3rd, Szigeti, K., & Goldman-Rakic, P. S. (1998). D1 receptor in interneurons of macaque prefrontal cortex: Distribution and subcellular localization. Journal of Neuroscience,18(24), 10553–10565

    PubMed  CAS  Google Scholar 

  • Niemegeers, C. J., & Janssen, P. A. (1965). A comparative study of the inhibitory effects of haloperidol and trifluperidol on learned shock-avoidance behavioural habits and on apomor-phine-induced emesis in mongrel dogs and in beagles. Psychopharmacologia, 8(4), 263–270

    Article  PubMed  CAS  Google Scholar 

  • Niv, Y., Daw, N. D., Joel, D., & Dayan, P. (2007). Tonic dopamine: Opportunity costs and the control of response vigor. Psychopharmacology (Berl), 191(3), 507–520

    Article  CAS  Google Scholar 

  • Nolan, K. A., Bilder, R. M., Lachman, H. M., & Volavka, J. (2004). Catechol O-methyltransferase Val158Met polymorphism in schizophrenia: Differential effects of Val and Met alleles on cognitive stability and flexibility. Ameican Journal of Psychiatry, 161(2), 359–361

    Article  Google Scholar 

  • O'Donnell, P., & Grace, A. A. (1994). Tonic D2-mediated attenuation of cortical excitation in nucleus accumbens neurons recorded in vitro. Brain Research, 634(1), 105–112

    Article  PubMed  Google Scholar 

  • Pascucci, T., Ventura, R., Latagliata, E. C., Cabib, S., & Puglisi-Allegra, S. (2007). The medial prefrontal cortex determines the accumbens dopamine response to stress through the opposing influences of norepinephrine and dopamine. Cerebral Cortex, 17, 2796–2804

    Article  PubMed  Google Scholar 

  • Paspalas, C. D., & Goldman-Rakic, P. S. (2005). Presynaptic D1 dopamine receptors in primate prefrontal cortex: Target-specific expression in the glutamatergic synapse. Journal of Neuroscience, 25(5), 1260–1267

    Article  PubMed  CAS  Google Scholar 

  • Patil, S. T., Zhang, L., Martenyi, F., Lowe, S. L., Jackson, K. A., Andreev, B. V., Avedisova, A. S., Bardenstein, L. M., Gurovich, I. Y., Morozova, M. A., Mosolov, S. N., Neznanov, N. G., Reznik,A. M., Smulevich, A. B., Tochilov, V. A., Johnson, B. G., Monn, J. A., & Schoepp, D. A. (2007). Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: A randomized Phase 2 clinical trial. Nature Medicine, 13(9), 1102–1107

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer, U. J., & Fendt, M. (2006). Prefrontal dopamine D4 receptors are involved in encoding fear extinction. Neuroreport, 17(8), 847–850

    Article  PubMed  CAS  Google Scholar 

  • Quist, J. F., Barr, C. L., Schachar, R., Roberts, W., Malone, M., Tannock, R., et al. (2003). The serotonin 5-HT1B receptor gene and attention deficit hyperactivity disorder. Molecular Psychiatry, 8(1), 98–102

    Article  PubMed  CAS  Google Scholar 

  • Redgrave, P., & Gurney, K. (2006). The short-latency dopamine signal: A role in discovering novel actions? Nature Reviews Neuroscience, 7(12), 967–975

    Article  PubMed  CAS  Google Scholar 

  • Robbins, T., & Roberts, A. (2007). Differential regulation of fronto-executive function by the monoamines and acetylcholine. Cerebral Cortex, 17, i151–i160

    Article  PubMed  Google Scholar 

  • Robbins, T. W. (2005). Chemistry of the mind: Neurochemical modulation of prefrontal cortical function. Journal of Comprative Neurology, 493(1), 140–146

    Article  CAS  Google Scholar 

  • Sagvolden, T., Aase, H., Zeiner, P., & Berger, D. F. (1998). Altered reinforcement mechanisms in Attention-Deficit/Hyperactivity Disorder. Behavioral Brain Research, 94, 61–71

    Article  CAS  Google Scholar 

  • Sawaguchi, T., & Goldman-Rakic, P. S. (1991). D1 dopamine receptors in prefrontal cortex:Involvement in working memory. Science, 251(4996), 947–950

    Article  PubMed  CAS  Google Scholar 

  • Sawaguchi, T., Matsumura, M., & Kubota, K. (1988). Dopamine enhances the neuronal activity of spatial short-term memory task in the primate prefrontal cortex. Neuroscience Research, 5(5), 465–473

    Article  PubMed  CAS  Google Scholar 

  • Sawaguchi, T., Matsumura, M., & Kubota, K. (1990). Effects of dopamine antagonists on neuro-nal activity related to a delayed response task in monkey prefrontal cortex. Journal of Neurophysiology, 63(6), 1401–1412

    PubMed  CAS  Google Scholar 

  • Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of Neurophysiology,80(1), 1–27

    PubMed  CAS  Google Scholar 

  • Schultz, W. (2002). Getting formal with dopamine and reward. Neuron, 36(2), 241–263

    Article  PubMed  CAS  Google Scholar 

  • Schultz, W., Apicella, P., Ljungberg, T., Romo, R., & Scarnati, E. (1993). Reward-related activity in the monkey striatum and substantia nigra. Progress Brain Research, 99, 227–235

    Article  CAS  Google Scholar 

  • Schwartz, M. L., & Goldman-Rakic, P. S. (1984). Callosal and intrahemispheric connectivity of the prefrontal association cortex in rhesus monkey: Relation between intraparietal and principal sulcal cortex. Journal of Comparative Neurology, 226(3), 403–420

    Article  PubMed  CAS  Google Scholar 

  • Seamans, J. K., Durstewitz, D., Christie, B. R., Stevens, C. F., & Sejnowski, T. J. (2001).Dopamine D1/D5 receptor modulation of excitatory synaptic inputs to layer V prefrontal cortex neurons. Proceedings of the National Academy of Sciences of the United States of America,98(1), 301–306

    Article  PubMed  CAS  Google Scholar 

  • Seamans, J. K., Gorelova, N., Durstewitz, D., & Yang, C. R. (2001). Bidirectional dopamine modulation of GABAergic inhibition in prefrontal cortical pyramidal neurons. Journal of Neuroscience, 21(10), 3628–3638

    PubMed  CAS  Google Scholar 

  • Seamans, J. K., & Yang, C. R. (2004). The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Progress in Neurobiology, 74(1), 1–58

    Article  PubMed  CAS  Google Scholar 

  • Seeman, P., Weinshenker, D., Quirion, R., Srivastava, L. K., Bhardwaj, S. K., Grandy, D. K., et al.(2005). Dopamine supersensitivity correlates with D2High states, implying many paths to sychosis. Proceedings of the National Academy of Sciences of the United States of America,102(9), 3513–3518

    Article  PubMed  CAS  Google Scholar 

  • Sesack, S. R., Bressler, C. N., & Lewis, D. A. (1995). Ultrastructural associations between dopamine terminals and local circuit neurons in the monkey prefrontal cortex: A study of calretinin-immunoreactive cells. Neuroscience Letters, 200(1), 9–12

    Article  PubMed  CAS  Google Scholar 

  • Sesack, S. R., Hawrylak, V. A., Guido, M. A., & Levey, A. I. (1998). Cellular and subcellular localization of the dopamine transporter in rat cortex. Advances in Pharmacology, 42,171–174

    Article  PubMed  CAS  Google Scholar 

  • Siegle, G. J., Thompson, W., Carter, C. S., Steinhauer, S. R., & Thase, M. E. (2007). Increased amygdala and decreased dorsolateral prefrontal BOLD responses in unipolar depression:Related and independent features.Biological Psychiatry, 61(2), 198–209

    Article  PubMed  Google Scholar 

  • Smith, K. M., Daly, M., Fischer, M., Yiannoutsos, C. T., Bauer, L., Barkley, R., et al. (2003).Association of the dopamine beta hydroxylase gene with attention deficit hyperactivity disorder: Genetic analysis of the Milwaukee longitudinal study. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 119(1), 77–85

    Google Scholar 

  • Snyder, S. H. (1974). Proceedings: Drugs, neurotransmitters, and psychosis. Psychopharmacology Bulletin, 10(4), 4–5

    PubMed  CAS  Google Scholar 

  • Sokolov, B. P. (1998). Expression of NMDAR1, GluR1, GluR7, and KA1 glutamate receptor mRNAs is decreased in frontal cortex of “neuroleptic-free” schizophrenics: Evidence on reversible up-regulation by typical neuroleptics. Jouranl of Neurochemistry, 71(6),2454–2464

    Article  CAS  Google Scholar 

  • Swanson, J. M., Kinsbourne, M., Nigg, J., Lanphear, B., Stefanatos, G. A., Volkow, N., et al.(2007). Etiologic subtypes of attention-deficit/hyperactivity disorder: Brain imaging, molecular genetic and environmental factors and the dopamine hypothesis. Neuropsychology Review,17(1), 39–59

    Article  PubMed  Google Scholar 

  • Taylor, E. (1998). Clinical foundations of hyperactivity research. Behavioral Brain Research,94(1), 11–24

    Article  CAS  Google Scholar 

  • Trantham-Davidson, H., Neely, L. C., Lavin, A., & Seamans, J. K. (2004). Mechanisms underlying differential D1 versus D2 dopamine receptor regulation of inhibition in prefrontal cortex.Journal of Neuroscience, 24(47), 10652–10659

    Article  PubMed  CAS  Google Scholar 

  • Tseng, K. Y., & O'Donnell, P. (2004). Dopamine-glutamate interactions controlling prefrontal cortical pyramidal cell excitability involve multiple signaling mechanisms. Journal of Neuroscience, 24(22), 5131–5139

    Article  PubMed  CAS  Google Scholar 

  • Tunbridge, E. M., Harrison, P. J., & Weinberger, D. R. (2006). Catechol-o-methyltransferase,cognition, and psychosis: Val158Met and beyond. Biological Psychiatry, 60(2), 141–151

    Article  PubMed  CAS  Google Scholar 

  • van Rossum, J. M. (1966). The significance of dopamine-receptor blockade for the mechanism ofaction of neuroleptic drugs. Archives Internationales de Pharmacodynamie et de Thérapie,160(2), 492–494

    PubMed  Google Scholar 

  • Verney, C., Alvarez, C., Geffard, M., & Berger, B. (1990). Ultrastructural double-labelling studyof dopamine terminals and GABA-containing neurons in rat anteromedial cerebral cortex.European Journal of Neuroscience, 2(11), 960–972

    Article  PubMed  Google Scholar 

  • Vijayraghavan, S., Wang, M., Birnbaum, S. G., Williams, G. V., & Arnsten, A. F. (2007). Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory. NatureNeuroscience, 10(3), 376–384

    CAS  Google Scholar 

  • Vincent, S. L., Pabreza, L., & Benes, F. M. (1995). Postnatal maturation of GABA-immunoreac-tive neurons of rat medial prefrontal cortex. Journal of Comparative Neurology, 355(1),81–92

    Article  PubMed  CAS  Google Scholar 

  • Vysokanov, A., Flores-Hernandez, J., & Surmeier, D. J. (1998). mRNAs for clozapine-sensitive receptors co-localize in rat prefrontal cortex neurons. Neuroscience Letters, 258(3), 179–182

    Article  PubMed  CAS  Google Scholar 

  • Wang, J., & O'Donnell, P. (2001). D(1) dopamine receptors potentiate nmda-mediated excitabilityincrease in layer V prefrontal cortical pyramidal neurons. Cerebral Cortex, 11(5), 452–462

    Article  PubMed  CAS  Google Scholar 

  • Wang, M., Ramos, B. P., Paspalas, C. D., Shu, Y., Simen, A., Duque, A., et al. (2007). Alpha2A-adrenoceptors strengthen working memory networks by inhibiting cAMP-HCN channel signaling in prefrontal cortex. Cell, 129(2), 397–410

    Article  PubMed  CAS  Google Scholar 

  • Wang, X. J., Tegné r, J., Constantinidis, C., & Goldman-Rakic, P. S. (2004). Division of labor among distinct subtypes of inhibitory neurons in a cortical microcircuit of working memory.Proceedings of the National Academy of Sciences of the United States of America, 101(5),1368–1373

    Article  PubMed  CAS  Google Scholar 

  • Wang, M., Vijayraghavan, S., & Goldman-Rakic, P. S. (2004). Selective D2 receptor actions on the functional circuitry of working memory. Science, 303(5659), 853–856

    Article  PubMed  CAS  Google Scholar 

  • Wedzony, K., Chocyk, A., Mackowiak, M., Fijal, K., & Czyrak, A. (2000). Cortical localization of dopamine D4 receptors in the rat brain—immunocytochemical study. Journal of Physiology and Pharmacology, 51(2), 205–221

    PubMed  CAS  Google Scholar 

  • West, A. R., & Grace, A. A. (2002). Opposite influences of endogenous dopamine D1 and D2 receptor activation on activity states and electrophysiological properties of striatal neurons:Studies combining in vivo intracellular recordings and reverse microdialysis. Journal of Neuroscience, 22(1), 294–304

    PubMed  CAS  Google Scholar 

  • Williams, G. V., & Goldman-Rakic, P. S. (1995). Modulation of memory fields by dopamine D1receptors in prefrontal cortex. Nature, 376(6541), 572–575

    Article  PubMed  CAS  Google Scholar 

  • Williams, S. M., & Goldman-Rakic, P. S. (1993). Characterization of the dopaminergic innerva-tion of the primate frontal cortex using a dopamine-specific antibody. Cerebral Cortex, 3(3),199–222

    Article  PubMed  CAS  Google Scholar 

  • Yan, Z., & Surmeier, D. J. (1997). D5 dopamine receptors enhance Zn2+-sensitive GABA(A) currents in striatal cholinergic interneurons through a PKA/PP1 cascade. Neuron, 19(5), 1115+1126

    Article  PubMed  CAS  Google Scholar 

  • Yanez, I. B., Munoz, A., Contreras, J., Gonzalez, J., Rodriguez-Veiga, E., & DeFelipe, J. (2005).Double bouquet cell in the human cerebral cortex and a comparison with other mammals.Journal of Comparative Neurology, 486(4), 344–360

    Article  PubMed  Google Scholar 

  • Yang, C. R., Seamans, J. K., & Gorelova, N. (1996). Electrophysiological and morphological properties of layers V-VI principal pyramidal cells in rat prefrontal cortex in vitro. Journal of Neuroscience, 16(5), 1904&1921

    PubMed  CAS  Google Scholar 

  • Yavich, L., Forsberg, M. M., Karayiorgou, M., Gogos, J. A., & Männistü, P. T. (2007). Site-specificrole of catechol-O-methyltransferase in dopamine overflow within prefrontal cortex and dorsal striatum. Journal of Neuroscience, 27(38), 10196–10209

    Article  PubMed  CAS  Google Scholar 

  • Zhou, F. M., & Hablitz, J. J. (1999). Dopamine modulation of membrane and synaptic properties of interneurons in rat cerebral cortex. Journal of Neurophysiology, 81(3), 967–976

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors

Corresponding author

Correspondence to F. Aboitiz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aboitiz, F. (2009). Dynamics of a Neuromodulator – II. Dopaminergic Balance and Cognition. In: Aboitiz, F., Cosmelli, D. (eds) From Attention to Goal-Directed Behavior. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70573-4_11

Download citation

Publish with us

Policies and ethics