Skip to main content

Patient Alignment and Target Tracking in Radiosurgery of Soft-Tissue Tumors Using Combined Fiducial and Skeletal Structures Tracking Techniques

  • Chapter
Treating Tumors that Move with Respiration

Abstract

When using the CyberKnife® (Accuray Incorporated, Sunnyvale, CA) Image-Guided Stereotactic Radiosurgery (SRS) System to treat soft-tissue tumors in anatomic sites other than intracranial or spinal locations — such as in the lung, liver, kidney, prostate, and pancreas — fiducial placement in or close to the tumors is necessary to assist patient alignment and target tracking for precise treatment delivery. Under the assumption of rigid transformation, at least three fiducial markers are required to obtain six-degreesof-freedom transformation parameters, i.e., three translations and three rotations. However, in most cases, soft tissue is highly deformable and non-rigid. This results in three possible scenarios: 1) the rigid body criteria fail and the rotational transformation cannot be obtained, 2) the tumor deformation results in unreliable computed rotational information, and 3) even when the fiducial array meets the rigid body criteria, the orientation of the tumor often has poor correlation with the global body orientation and thus results in dosimetric deviation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ryu SI, Chang SD, Kim DH, et al. Image-guided hypofractionated stereotactic radiosurgery to spinal lesions. Neurosurgery 2001;49:838–846.

    Article  PubMed  CAS  Google Scholar 

  2. Murphy MJ. Fiducial-based targeting accuracy for external-beam radiotherapy. Med Phys 2002;29:334–344.

    Article  PubMed  Google Scholar 

  3. Wu X, Main W, Schwade GJ. Measurement of total clinical accuracy of an image-guided radiosurgery system. Med. Phys. 2004;31:1901.

    Google Scholar 

  4. Balter JM, Brock KK, Litzenberg DW, et al. Daily targeting of intrahepatic tumors for radiotherapy. Int J Radiat Oncol Biol Phys 2002;52:266–271.

    Article  PubMed  Google Scholar 

  5. Balter JM, Dawson LA, Kazanjian S, et al. Determination of ventilatory liver movement via radiographic evaluation of diaphragm position. Int J Radiat Oncol Biol Phys 2001;51:267–270.

    Article  PubMed  CAS  Google Scholar 

  6. Loo BW, Thorndyke BR, Maxim PG, et al. Determining margin for target deformation and rotation in respiratory motion-tracked stereotactic radiosurgery of pancreatic cancer. Int. J. Rad. Oncol. Biol. Phys. 2005;63:S31.

    Article  Google Scholar 

  7. Wu X, Sosa O, Yang J, et al. Practical target tracking strategy for soft-tissue tumor SRS with Cyberknife. Whole Body Radiosurgery Symposium. Washington, DC; 2005.

    Google Scholar 

  8. Fu D, Kuduvalli G. Enhancing skeletal features in digitally reconstructed radiographs. In: Reinhardt JM, Pluim JP, editors. Proceedings of SPIE. Vol 6144: International Society for Optical Engineering; 2006. pp. 846–851.

    Google Scholar 

  9. Fu D, Kuduvalli G, Maurer CR, et al. 3D target localization using 2D local displacements of skeletal structures in orthogonal X-ray images for image-guided spinal radiosurgery. International Journal of Computer Assisted Radiology and Surgery (Suppl 1) 2006:198–200.

    Google Scholar 

  10. Langer MP, Papiez L, Spirydovich S, et al. The need for rotational margins in intensity-modulated radiotherapy and a new method for planning target volume design. Int J Radiat Oncol Biol Phys 2005;63:1592–1603.

    Article  PubMed  Google Scholar 

  11. Papiez L, Langer M. On probabilistically defined margins in radiation therapy. Phys Med Biol 2006;51:3921–3939.

    Article  PubMed  Google Scholar 

  12. Brown WT, Perman M, Wu X, et al. Image-guided robotic stereotatic radiosurgery for treatment of lung tumors. In: Mould RF, Bucholz RD, Gagnon GJ, et al., editors. Robotic Radiosurgery. Vol I. Sunnyvale, CA: The Cyberknife Society Press; 2005. pp. 255–268.

    Google Scholar 

  13. Perman M, Bellairs EE, Wu X, et al. Cancer of the pancreas with special reference to epidemiology & radiosurgery. In: Mould RF, Bucholz RD, Gagnon GJ, et al., editors. Robotic Radiosurgery. Vol I. Sunnyvale, CA: The Cyberknife Society Press; 2005. pp. 301–314.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wu, X. et al. (2007). Patient Alignment and Target Tracking in Radiosurgery of Soft-Tissue Tumors Using Combined Fiducial and Skeletal Structures Tracking Techniques. In: Urschel, H.C., Kresl, J.J., Luketich, J.D., Papiez, L., Timmerman, R.D., Schulz, R.A. (eds) Treating Tumors that Move with Respiration. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69886-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69886-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69885-2

  • Online ISBN: 978-3-540-69886-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics