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Abstract. NVIDIA have released a new platform (CUDA) for general
purpose computing on their graphical processing units (GPU). This pa-
per evaluates use of this platform for statistical machine learning appli-
cations. The transfer rates to and from the GPU are measured, as is
the performance of matrix vector operations on the GPU. An implemen-
tation of a sparse matrix vector product on the GPU is outlined and
evaluated. Performance comparisons are made with the host processor.

1 Introduction

The GeForce 8800 GPU is the first GPU from NVIDIA to implement a unified
architecture where the pixels and vertices are processed by the same hardware.
This provides a higher degree of programmability than for previous GPUs and is
much better suited to general purpose computing. In recognition of this, NVIDIA
have released a general purpose programming interface called CUDA (see sec-
tion 2.3 for details) and have packaged the same basic hardware as a dedicated
co-processor for use by high performance computing applications (the Tesla prod-
uct range). Moreover, NVIDIA have also announced [1] that future generations
of their hardware will provide support for IEEE double precision arithmetic;
a move that will arguably remove the one remaining major bottleneck to the
widespread use of GPUs in scientific computations.

While the CUDA programming interface significantly eases use of the NVIDIA
GPUs for general purpose programming, the programming model provided by
CUDA is very different to that available on a traditional CPU. For instance
CUDA has the concepts of shared, constant, texture, and global memories that
all have slightly different properties, and determining how best to use each mem-
ory type for a given application is non-trivial. Also, it must be remembered that
when using any coprocessor the observed performance will depend heavily on
what fraction of the application can be run on the coprocessor, and whether
the overheads introduced in order to move data to and from the coprocessor are
small compared to the computational times involved.

In this paper we outline our initial efforts to migrate a Statistical Machine
Learning (ML) application to the GeForce 8800 GPU. The kernel of this applica-
tion involves an iterative solver that performs repeated matrix vector products.
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For a number of reasons this application would appear to be well suited to use
of a GPU. First, matrix operations are generally well suited to vector or stream
processors such as the GeForce 8800. Second, matrix vector products scale as
O(N · d), where N is the number of data points and d is the inherent dimen-
sionality of the problem, whereas other steps of a ML application typically scale
as O(N). Consequently for high-dimensional problems, migrating this part of
the application to the GPU is potentially beneficial. Third, the matrix does not
change between iterations, so it can be copied once to memory on the GPU and
reused during each iteration. Finally, for many ML problems single precision
arithmetic is sufficient, so the porting effort required is of immediate benefit
even before double precision GPUs become available.

On closer inspection the situation is not quite as simple. In particular, al-
though matrix operations can be easily vectorized, the amount of data may
exceed what a single GPU card can hold (there is 768 MB on the GPU used).
Consequently the resulting performance depends heavily on the bandwidth of
the bus connecting the CPU and the GPU. Secondly, for matrix-vector multipli-
cations, the limiting factor is the memory bandwidth rather than the raw floating
point performance (the latter exceeds the former on both CPU and GPU). This
ratio is generally less favourable for GPUs than the ratio between GPU and CPU
peak floating point ratios. Finally, many ML problems involve sparse matrices,
so the use of a sparse matrix vector product may be preferable to use of the
dense equivalent. Sparse matrix algorithms are, however, considerably harder to
adapt to stream processors.

With the goal of migrating the complete ML application to CUDA this paper
addresses three issues: i) What transfer rates can be achieved between host and
GPU memory and vice versa, ii) What performance is achieved when using
the CUDA supplied BLAS library to perform a variety of dense matrix vector
products of sizes similar to those required by ML applications, iii) How does
the performance of the latter compare with what we can obtain by hand coding
sparse matrix vector products in CUDA.

The following section gives background information about the ML application,
the NVIDIA 8800 GPU hardware, its CUDA programming model, and methods
for sparse matrix vector products. Section 3 details our experimental setup, while
Section 4 contains detailed performance results. Section 5 uses the performance
data gather here to discusses how a full ML application is likely to perform on
the GeForce 8800 and outlines plans for our future work.

2 Background

2.1 The ML Application

One of the key objectives in ML is, given some patterns xi, such as pictures
of apples and oranges, and corresponding labels yi, such as the information
whether xi is an apple or an orange, to find some function f which allows us
to estimate y from x automatically. See e.g. [2] for an introduction. In this
quest, convex optimization is a key enabling technology for many problems. For
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Initial guess w Compute Xw
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and gradient g
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Return w

Fig. 1. Iterative solver algorithm. The black boxes refer to matrix-vector operations
which could be accelerated by a GPU.

Table 1. Statistics for some typical ML datasets [3]

Domain Dataset Rows Columns Nonzero Elements Density
Intrusion Detection KDDCup99 3,398,431 127 55,503,855 12.86%
Ranking NetFlix 480,189 17,770 100,480,507 1.17%
Text Categorization Reuters C11 804,414 47,236 60,795,680 0.16%
Text Categorization Arxiv astro-ph 62,369 99,757 4,977,395 0.08%

instance, Teo et al. [3] proposed a scalable convex solver for such problems. It
is an iterative algorithm that involves guessing a solution vector w, using this
to evaluate a loss function l(x, y, w) and its derivative g = ∂wl(x, y, w), and
then updating w accordingly. This process is repeated until a desired level of
convergence is achieved (see Fig. 1). As mentioned above the majority of time
is spent evaluating the matrix vector products, and the elements of matrix (X)
do not change between iterations.

Many ML datasets are very sparse, as shown in Table 1. Exploiting the spar-
sity decreases the memory footprint of the matrix as well as the the number of
floating point operations required for the matrix vector product. Unfortunately
it also introduces random memory access patterns and indirect addressing, which
is likely to result in less efficient utilization of a GPU’s hardware.

2.2 NVIDIA 8800 GTX Hardware

Figure 2 illustrates the architecture of the GeForce 8800 GTX used in this work.
At the heart of the device lies the Streaming Processor Array (SPA) consisting
of 8 Texture Processor Cluster (TPC) units. Each TPC contains 2 Streaming
Multiprocessor (SM) units and a texture unit. The SM in turn consists of 8
Stream Processors (SP) clocked at a default of 1.35 GHz. When running CUDA
applications each SP is able to issue one multiply-add (MAD) instruction per
cycle. This gives each SM a peak performance of 21.6 GFLOPS, and the GeForce
8800 GTX with 16 SMs an aggregate performance of 345.6 GFLOPS.

The SPA is connected to 768 MB of GDDR3 memory through a 384-bit (48
byte) wide interface. Clocked at 900 MHz (1800 MHz effective double data rate)
by default, the frame buffer memory has a peak bandwidth of 84.375 GB/s. More
details of the NVIDIA hardware can be found in [4].
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Hardware View Software View

Fig. 2. GeForce 8800 GTX architecture and CUDA memory model

2.3 CUDA

The Compute Unified Device Architecture (CUDA), is a hardware and software
architecture that enables the issuing and managing of computations on the GPU
as a data-parallel device without the need to map the computations to a graph-
ics API. CUDA transforms the hardware’s personality from a graphics card to a
multi-threaded coprocessor. Provided with CUDA are Basic Linear Algebra Sub-
programs (BLAS) and Fast Fourier Transform (FFT) implementations, however
NVIDIA only provides a C/C++ API for these.

CUDA executes that part of the application that runs on the GPU using
hundreds or thousands of threads. These threads are organized into a grid of
blocks. The grid can be either one or two dimensional, while each block can be a
one, two or three dimensional group of threads. The grid and block dimensions
can be set at runtime with each thread able to retrieve its own thread and
block id. Each block of threads is executed on one physical SM, with NVIDIA
hardware only allowing synchronization and access to fast shared memory for
threads in the same block. An illustration of the CUDA memory model is given
in Fig. 2. A programming guide [1] providing additional information is available
from NVIDIA (http://www.nvidia.com).

2.4 Sparse Matrices on GPUs

A popular representation for sparse matrices is compressed sparse row (CSR) [5]
storage. Non-zero elements are arranged into a dense vector val. For each value
in val, its column index from the original matrix is stored in a dense vector of
the same size ind at the same offset. A third pointer array (ptr) carries the offset
of the first element in every row. CSR storage and associated pseudo code for a
sparse matrix vector product are shown in Fig. 3.

http://www.nvidia.com
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for each row i do
for l=ptr[i] to ptr[i+1]-1 do

y[i]=y[i]+val[l].x[ind[l]]

Fig. 3. CSR format and pseudo-code for matrix vector product

Sparse matrix vector products (SpMV) have been implemented on older GPU
hardware [6,7,8], but were limited by the graphics API and hardware constraints;
Bolz et al. [6] and Krüger et al. [8] achieved 9 and 110 MFLOPS respectively in
2003. Ujaldon et al. [9] achieved 222 MFLOPS in 2005 and recently Sengupta et
al. [10] achived 215 MFLOPS with CUDA on a GeForce 8800 GTX in 2007.

3 Experimental Setup

The GeForce 8800 GTX was hosted in a 2 GHz dual core AMD Athlon64 3800+
system with 2GB of PC3200 DDR memory. The processor has 128KB of L1 cache
and 1 MB L2 cache and it has a theoretical peak performance of 8 GFLOPS.

For all benchmarks and experiments, the code was run for 100 iterations
and the average time was used to calculate bandwidth and FLOPS. Results for
the GPU include the time required to transfer the vector to the GPU and the
resulting product vector back to the host. For the sparse matrix vector product
FLOPS were calculated as (2 × nonzero elements ÷ time).

For dense matrix vector products the CUDA BLAS library (CUBLAS) was
used on the GPU, while ATLAS1 was used on the host. Both specialist matrix
vector routines (SGEMV) and general matrix matrix routines (SGEMM) were
considered, although for ATLAS SGEMV always outperformed SGEMM, since
SGEMM is optimized for matrix-matrix multiplications, and thus results for
ATLAS SGEMM will not be given. ATLAS permits the matrix to be given
in either row or column major format, while CUDA only supports matrices in
column major format. Results are given for both normal (N) and transpose (T)
ordering of the matrix as both these are required (see Fig. 1).

As yet CUBLAS doesn’t support sparse matrices, so our own sparse matrix
vector implementation was written (described later). Sparse test matrices were
generated using the following code with the condition that each row contains at
least one non-zero element.

s: chosen sparsity (0% to 99%)
for each row i do

for each column j do
if s <= random(0,99) do matrix[i][j] = 1.0

1 Automatically Tuned Linear Algebra Software, http://math-atlas.sourceforge.net
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Table 2. Host initiated memory transfer rates (GB/s)

Latency μs 1KB 1MB 100MB
Main Memory to GPU 22 0.03 0.80 1.10
Main Memory (pinned) to GPU 18 0.04 2.70 3.10
GPU to Main Memory 18 0.04 0.40 0.50
GPU to Main Memory (pinned) 15 0.05 2.80 3.00
GPU Memory to GPU Memory 12 0.14 50.59 71.17

4 Results

4.1 Memory Transfer Rates

Rates for various memory transfer operations are given in Table 2. All transfers
are initiated by a CUDA call on the host, with the time recorded from before this
call until after the transfer was complete. Hence all benchmarks involve commu-
nication over the PCIe bus which has a maximum bandwidth of 4 GB/s. For
host to GPU transfers with large data sizes only ∼25% of the PCIe bandwidth
is achieved. CUDA, however, allows for the allocation of non-pageable pinned
memory on the host, and when this is used approximately 75% of the peak PCIe
rate is achieved. When using unpinned memory transfer rates from the GPU to
main memory are significantly less than from main memory to GPU, but these
become roughly equivalent when using pinned memory. All transfers were found
to have a latency of ∼20μs, probably reflecting the latency of the PCIe bus. The
bandwidth for transferring data from GPU memory to GPU memory was also
measured and found to have an asymptotic value close to the 84.4 GB/s peak,
with nearly 60% of this achieved for a 1 MB transfer.

4.2 Dense Matrix Vector Performance

Using CUBLAS matrix dimensions that were not a multiple of 16 were found to
have significantly lower performance; since for ML applications padding can be
done once, only results for matrices that are a multiple of 16 will be reported here.
Performance data for square matrices of ascending sizes are given in Fig. 4. These
show that on the host system performance is roughly constant for all matrix
sizes and that normal ordering significantly out performs transpose ordering.
On the GPU performance is much more varied. For normal ordering SGEMV
performance increases dramatically as the dimension increases, but for transpose
ordering it is roughly constant. Thus, while transpose SGEMV ordering is over
twice as fast as normal ordering when N=1024, by the time N=5120 it is 30%
slower. In almost all cases use of SGEMM instead of SGEMV is found to be
slower. At best use of the GPU is ∼ 4.5× faster than use of the host processor.

To observe the effect of matrix shape on performance the total size of the
matrix was set to ∼100 MB (5120 × 5120 or 26,214,400 elements) while the
number of rows and columns was varied. The results, given in Fig. 5, show a
degradation in performance when the number of columns exceeds the number
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Dimension

Host GPU
RowMajor ColMajor
SGEMV SGEMV SGEMM
N T N T N T

1024 2.7 1.2 3.6 7.8 6.9 6.5
2048 2.9 1.2 7.2 9.2 6.8 7.1
2816 2.9 1.1 9.5 9.0 6.4 7.0
3200 2.9 1.1 10.6 10.0 6.2 6.9
4480 3.0 1.1 13.0 8.7 6.8 7.6
5120 3.0 1.2 13.6 9.9 7.0 7.8
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Fig. 4. Performance (GFLOPS) for square matrix vector products

Columns Rows

Host GPU
RowMajor ColMajor
SGEMV SGEMV SGEMM
N T N T N T

204800 128 1.7 0.5 12.5 9.3 6.0 6.8
51200 512 2.5 1.1 13.4 9.9 6.7 7.6
25600 1024 2.8 1.1 12.8 9.7 6.9 7.8
10240 2560 2.9 1.2 12.0 10.2 7.0 7.8
5120 5120 3.0 1.2 13.6 9.9 7.0 7.8
2560 10240 2.7 1.1 8.9 8.3 7.0 7.9
1024 25600 2.7 1.2 3.9 10.1 7.1 7.7
512 51200 2.7 1.2 2.0 5.3 7.1 7.9
128 204800 2.7 0.9 0.5 1.3 1.8 2.0
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Fig. 5. Performance (GFLOPS) as function of shape for matrix vector product

of rows, particularly when using transpose ordering. Although a similar effect
occurs when using SGEMM this only happens when the difference is 2 orders
of magnitude. In summary the results given here suggest that there is further
scope to optimise the performance of the SGEMV routine in CUBLAS.

4.3 Initial Sparse Matrix Vector Implementation

The approach taken here stores the matrix in CSR and is parallelized by assign-
ing rows to threads such that each thread multiplies all the elements in a given
row by the corresponding elements in the vector before writing the sum to the
relevant element in the result vector. The following issues were considered:

Memory Loads: While CUDA only supports scalar operations, it also supports
upto 128-bit wide vector data types. Loading a float or a float4 from memory
costs the same. For a 3000×3000 matrix at 95% sparsity and 32 threads/block, an
SpMV took 827 and 442 μs when using float and float4 data types respectively.

Use of Different Memory Types: The GeForce 8800 GPU offers different
types of memory (Fig. 2). The key to optimizing the SpMV code on the GPU is
determining the most efficient use of each memory type.
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� Global Memory. On our card there was 768 MB of global memory. This
memory is not cached, but can be read and written to by any thread.

� Shared Memory. Each SM has 16KB of shared memory that threads in the
same block can use to share data. We do not currently use this.

� Constant Memory. There is 64KB of cacheable read only memory that is
initialized each time a GPU kernel is started. Storing the vector in constant
memory limits vector sizes to ∼ 16000 but further reduces the SpMV dura-
tion to 242 μs for a 3000×3000 matrix at 95% sparsity and 32 threads/block.

� Texture References. CUDA allows binding of global memory to a texture ref-
erence. Our initial results suggest this may be useful for the matrix, but only
with large row dimensions. Results given here do not use texture references.

The performance of the SpMV implementation for square matrix vector prod-
ucts with a variety of different numbers of threads per block is given in Figure 6
for matrices with 75% and 95% sparsity. The results show significant variation
in performance as a function of number of threads per block, particularly at 95%
sparsity. The optimal number of threads per block changes with the size of the
matrix, and although there is a general trend suggesting more threads per block
for large matrices this is not always true. Secondly, beyond some key dimension
the performance drops markedly and becomes roughly the same regardless of
thread count. At best a performance of 3-4 GFLOPS is observed. By compari-
son recent work of Gahvari et al. [11] using a range of sparse matrices on a 1.4
GHz Opteron gave a maximum performance of ∼400 MFLOPS for an unblocked
CSR SpMV and a median performance of ∼180 MFLOPS (On current hardware
these values would probably increase by a factor of 3).

To determine when it is preferable to use SpMV over dense matrix vector
products we plot in Fig. 7 the speedup of SpMV at 75% and 95% sparsity over
the equivalent SGEMV runs. This shows that for 75% sparsity using SpMV can
be advantageous for dimensions upto around 4000, while for 95% sparsity using
SpMV is always an advantage.

5 Discussion and Further Directions

The results from Section 4.1 show that it is possible to transfer a large ML
dataset to global memory on the GPU card at around 3GB/s. On the GPU card
used in this work there was 768 MB of memory, so if 600 MB of this were used
to store the ML dataset it would take ∼0.2 s to transfer the data from host
memory to GPU memory. This is the minimum amount of time that must be
saved when using the GPU instead of the host to perform the computational
work. Achieving this is most likely to be possible if the dataset can be copied
to the GPU once, left there and re-used in each iteration of the convex solver
(Fig. 1). From Table 1 and using CSR storage this should be possible for the
intrusion detection and two text categorization datasets. For larger datasets an
alternative strategy would be to divide the problem/dataset over multiple GPU
cards, or to use double buffering to overlap movement of data to the GPU with
computation on the GPU.
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Fig. 6. SpMV performance at 75% and 95% sparsity
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Results for dense matrix vector products show a potential speedup of 3 − 5×
from use of the GPU for matrices of dimension 2500×2500 and above. To obtain
this performance from the current version of CUBLAS requires, however, that
the number of rows in the (column major) matrix be a multiple of 16. While
3 − 5× is a useful performance gain, the cost of moving the dataset to the GPU
could easily erode this advantage. As a consequence it is not clear which would
be a better option if, for example, it were a choice between buying a dual core
host with an NVIDIA GTX 8800 as a coprocessor or a quad core host.

Performance for our initial sparse matrix vector product is significantly bet-
ter than we originally expected, achieving similar 3− 5× speedups over the host
CPU, even for small 1000 × 1000 matrices if the sparsity is over 90%. Since
many ML datasets are sparse this suggests that it would be advantageous to
place further effort into optimising the SpMV routine for CUDA, and in partic-
ular, trying to eliminate the performance drop observed after certain dimensions
and trying to determine automatically the optimal number of threads per block
to use for a given problem size. While other approaches exist that may offer
performance gains in specific areas (such as the use of coalesced memory reads),
they also introduce complexities. We are in the process of evaluating such ap-
proaches. Finally, for easier integration with existing software it would be useful
to implement an OSKI2 (Optimized Sparse Kernel Interface) front-end.
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