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Abstract. The main purpose of this paper is to describe techniques for
the numerical solution of a Sturm-Liouville equation (in its Schrödinger
form) by employing a Magnus expansion. With a suitable method to
approximate the highly oscillatory integrals which appear in the Magnus
series, high order schemes can be constructed. A method of order ten is
presented. Even when the solution is highly-oscillatory, the scheme can
accurately integrate the problem using stepsizes typically much larger
than the solution “wavelength”. This makes the method well suited to
be applied in a shooting process to locate the eigenvalues of a boundary
value problem.

1 Introduction

In this paper we are concerned with the numerical approximation of problems
of the form

y′′(x) = [V (x) − E] y(x), a ≤ x ≤ b (1)

This equation is the Sturm-Liouville equation in its Liouville normal form, also
called Schrödinger form. Mathematically, Schrödinger problems arise from the
standard separation of variables method applied to a linear partial differential
equation, and in connection with the inverse scattering transform for solving non-
linear partial differential equations. The Schrödinger equation is also well known
as the fundamental equation in quantum physics or quantum chemistry but
arises for instance also in geophysical applications, and vibration and heat flow
problems in mechanical engineering. Many Schrödinger problems have explicit
solutions, and are therefore important in the analytic investigation of different
physical models. However most (boundary value) problems cannot be solved ana-
lytically, and computationally efficient approximation techniques are of great ap-
plicability. Although we focus in this paper on the basic Schrödinger equation in
a finite domain and with a smooth potential V (x), our scheme can be extended to
a more general Sturm-Liouville problem −(p(x)y′(x))′ + q(x)y(x) = Ew(x)y(x).

The parameter E (also called the eigenvalue) in (1) is unknown, and is to be
found subject to some kind of boundary conditions in the endpoints a and b.
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It is well known that as E grows, the solutions of (1) become increasingly oscil-
latory. In fact, as E → +∞ the solution “wave length” approaches 2π/

√
E. This

highly oscillatory character of the solution is the reason why standard integra-
tors encounter difficulties in efficiently estimating the higher eigenvalues: a naive
integrator will be forced to make increasingly smaller steps severely increasing
the running time.

By taking advantage of special methods, one can construct numerical algo-
rithms having special advantages over these standard (naive) methods. Pruess
suggested to approximate the coefficients of the problem by piecewise constant
approximations, solving the problem analytically on the piecewise constant in-
tervals (see [15,16]). For such a coefficient approximation method the step size is
not restricted by the oscillations in the solution but the scheme is only second or-
der, unless Richardson extrapolation approximations are made. Two approaches
have been suggested to construct higher order schemes, both being natural ex-
tensions of the Pruess ideas. A first approach is based on a technique from
mathematical physics: the perturbation approximation, leading to the so-called
Piecewise Perturbation Methods (PPM) (see [8,9,10,11]). In [2] it was shown
that the piecewise perturbation approach may be viewed as the application of
a modified Neumann series. The second approach consists in the application of
another integral series: the Magnus series.

During the last decade, numerical schemes based on the Magnus expansion
received a lot of attention due to their preservation of Lie group symmetries (see
[5],[14], and references cited therein). More generally, Magnus methods have
been applied in spectral theory, Hamiltonian systems, symplectic and unitary
integration, control theory, stochastic systems, and quantum chemistry; see [1]
for a list of applications. Moan [13] was the first to consider a Magnus method in
the context of Sturm-Liouville problems. He applied a Magnus series integrator
directly to eq. (1) with a piecewise polynomial V (x). However poor approxima-
tions can then be expected for large eigenvalues. Later Degani and Schiff [2,3]
and Iserles [4] showed that it is a better idea for oscillatory ordinary differential
equations to apply the Magnus series integrator not directly to the equation but
to the so-called modified equation. In [12] such a modified Magnus scheme of
order eight was constructed for the Schrödinger problem and applied in a shoot-
ing procedure to compute the eigenvalues of the boundary value problem. In
the current paper we present the construction of a modified Magnus method of
order ten. In order to reach tenth order, the Filon-based quadrature rule for the
oscillatory integrals appearing in the Magnus series, had to be extended to triple
integrals. Also this new modified Magnus integrator can be used in a shooting
process to efficiently compute eigenvalues.

2 The (Modified) Magnus Method

The differential equation (1) is converted into a system of first-order ODE’s

y(x)′ = A(x, E)y(x), y(a) = y0, (2)
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where

A(x, E) =
(

0 1
V (x) − E 0

)
, (3)

and y = [y(x), y′(x)]T . Suppose that we have already computed yi ≈ y(xi)
and that we wish to advance the numerical solution to xi+1 = xi + hi. We first
compute a constant approximation V̄ of the potential function V (x)

V̄ =
1
hi

∫ xi+hi

xi

V (x)dx. (4)

Next we change the frame of reference by letting

y(x) = e(x−xi)Āu(x − xi), xi ≤ x ≤ xi+1 (5)

where

Ā(E) =
(

0 1
V̄ − E 0

)
. (6)

We treat u as our new unknown which itself obeys the linear differential equation

u′(δ) = B(δ, E)u(δ), δ = x − xi ∈ [0, hi], u(0) = yi (7)

where
B(δ, E) = e−δĀ

(
A(xi + δ) − Ā

)
eδĀ. (8)

The matrix B can be computed explicitly. With ξ(Z) and η0(Z) defined as

ξ(Z) =

{
cos(|Z|1/2) if Z ≤ 0 ,

cosh(Z1/2) if Z > 0 ,
(9)

η0(Z) =

⎧⎪⎪⎨
⎪⎪⎩

sin(|Z|1/2)/|Z|1/2 if Z < 0 ,

1 if Z = 0 ,

sinh(Z1/2)/Z1/2 if Z > 0 ,

(10)

we can write B as

B(δ, E) = ΔV (δ)

⎛
⎜⎝ δη0(Z2δ)

1 − ξ(Z2δ)
2(E − V̄ )

−1 + ξ(Z2δ)
2

−δη0(Z2δ)

⎞
⎟⎠ , (11)

where ΔV (δ) = V̄ − V (xi + δ) and Zγ = Z(γ) = (V̄ − E)γ2. Note that the
PPM-formulation in e.g. [8,9] uses the same functions ξ(Z) and η0(Z) .

We apply a Magnus method to the modified equation (7). The Magnus ex-
pansion is then (where the bracket denotes the matrix commutator)

σ(δ) = σ1(δ) + σ2(δ) + σ3(δ) + σ4(δ) + . . . , (12)
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where

σ1(δ) =
∫ δ

0
B(x)dx,

σ2(δ) = −1
2

∫ δ

0

∫ x1

0
[B(x2), B(x1)]dx2dx1,

σ3(δ) =
1
12

∫ δ

0

[∫ x1

0
B(x2)dx2,

[∫ x1

0
B(x2)dx2, B(x1)

]]
dx1,

σ4(δ) =
1
4

∫ δ

0

[∫ x1

0

[∫ x2

0
B(x3)dx3, B(x2)

]
dx2, B(x1)

]
dx1,

and u(δ) = eσ(δ)yi, δ ≥ 0. Thus, to compute yi+1 = ehĀeσ(h)yi with h = hi,
we need to approximate σ(h) by truncating the expansion (12) and replacing
integrals by quadrature (see next section). The 2 × 2 matrix exponentials ehĀ

and eσ(h) can be written down explicitely. ehĀ is the matrix exponential of a
constant matrix, and thus

expm
(

0 h
h(V̄ − E) 0

)
=

(
ξ(Zh) hη0(Zh)

Zhη0(Zh)/h ξ(Zh)

)
, Zh = Z(h). (13)

To write down an expression for eσ(h), we note that σ(h) is always a two by two
matrix with zero trace. For such matrices the following is true:

expm
(

a b
c −a

)
=

(
ξ(ω) + aη0(ω) bη0(ω)

cη0(ω) ξ(ω) − aη0(ω)

)
, ω = a2 + bc. (14)

Here a, b, c, ω are functions of x and E.

3 Integration of the Integrals

As shown in [4], the regular Magnus quadrature formulae ([7]) are useless in
the presence of high oscillation. For E 	 V̄ the matrix function B in (11) is
highly oscillatory and quadrature must be used that respects high oscillation.
Filon-type quadrature can be used to approximate highly oscillating integrals
to a suitable precision in a small number of function evaluations per step. As
in [12], we will apply Filon-type quadrature not-only in the oscillatory region
E > V̄ , but also in the nonoscillatory E < V (x) region (where it is just as good
as regular Gauss-Christoffel Magnus quadrature).

The univariate Filon-rule is discussed in [4] and has the nice property that
while regular quadrature is ineffective in the presence of high oscillation, Filon
quadrature delivers accuracy which actually improves with higher oscillation.
Here, we use this Filon-rule to approximate the univariate (modified) Magnus
integral

∫ h

0 B(δ)dδ. In fact, this means that ΔV (δ) in (11) is replaced by the
Lagrange polynomial LΔV (δ) =

∑ν
k=1 ΔV (ckh)
k(δ) where 
k is the kth cardinal

polynomial of Lagrangian interpolation and c1, c2, . . . , cν are distinct quadrature
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nodes. The resulting integrals can then be solved analytically. An alternative way
to obtain the interpolating polynomial LΔV (δ) is by approximating V (x) by a
series over shifted Legendre polynomials:

V (x) ≈
ν−1∑
s=0

Vsh
sP ∗

s (δ/h) (15)

By the method of least squares the expressions for the coefficients Vs are
obtained:

Vs =
(2s + 1)

hs+1

∫ h

0
V (xi + δ)P ∗

s (δ/h)dδ, m = 0, 1, 2, . . . . (16)

It can then be noted that V̄ = V0 and ΔV (δ) ≈ LΔV (δ) = −
∑ν−1

s=1 Vsh
sP ∗

s (δ/h).
To compute the integrals (16) tenth-order Gauss-Legendre is used, requiring
ν = 5 function evaluations of V (Gauss-Lobatto is another option).

With

ξ̂ = ξ(Z2h), η̂0 = η0(Z2h), Z2h = 4Zh = 4(V̄ − E)h2

and V̂s = hs+1Vs, s = 1, . . . , 4, we obtain then the following

1
h

∫ h

0
ΔV (δ)δη0(Z2δ)dδ≈ (V̂1/2 + 5V̂4 + 3V̂2/2 + 3V̂3)η̂0

Zh

+
(−V̂3 − V̂2 − V̂4 − V̂1)ξ̂ − V̂1+V̂4+V̂2 − V̂3

4Zh

+
(−45V̂4 − 3V̂2 − 15V̂3)ξ̂ − 15V̂3+45V̂4+3V̂2

4Z2
h

+
(15V̂3+105V̂4)η̂0

2Z2
h

+
−105V̂4/4ξ̂+105V̂4/4

Z3
h

(17)

∫ h

0
ΔV (δ) (1+ξ(Z2δ)) dδ≈

∫ h

0
ΔV (δ)ξ(Z2δ)dδ

∫ h

0
ΔV (δ) (1−ξ(Z2δ)) dδ≈−

∫ h

0
ΔV (δ)ξ(Z2δ)dδ

≈(V̂1+V̂2+V̂3+V̂4)η̂0+
(3V̂2+15V̂3+45V̂4)η̂0

Zh

+
(−3V̂2− V̂1− 10V̂4 − 6V̂3)ξ̂ + 6V̂3 − 3V̂2 − 10V̂4 + V̂1

2Zh

+
210V̂4η̂0 + (−105V̂4 − 15V̂3)ξ̂ − 105V̂4 + 15V̂3

2Z2
h

(18)

which allows us to approximate
∫ h

0 B(δ)dδ. Including only this first Magnus-
term is sufficient to have a fourth-order method. However to construct a method
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of order ten, we need to include more Magnus terms. First we consider the
approximation of σ2. We extend the Filon idea to the computation of the double
integral. As in [12] we write the double integral as

∫ h

0

∫ δ1

0
[B(δ2), B(δ1)]dδ2dδ1 = 2

∫ h

0

∫ δ1

0
ΔV (δ1)ΔV (δ2)K1(δ1, δ2)dδ2dδ1U1

+2
∫ h

0

∫ δ1

0
ΔV (δ1)ΔV (δ2)K2(δ1, δ2)dδ2dδ1U2

+2
∫ h

0

∫ δ1

0
ΔV (δ1)ΔV (δ2)K3(δ1, δ2)dδ2dδ1U3

(19)

where K1(x, y) = yη0(Z2y) − xη0(Z2x), K2(x, y) = ξ(Z2x) − ξ(Z2y), K3(x, y) =
(x − y)η0(Z2(x−y)) and

U1 =
(

0 1
2(E−V̄ )

1
2 0

)
, U2 =

(
− 1

4(E−V̄ ) 0
0 1

4(E−V̄ )

)
, U3 =

(
0 1

2(E−V̄ )
−1
2 0

)
.

(20)
The three integrals in (19) must be replaced by quadrature. We again replace ΔV
by the polynomial LΔV and solve the resulting integrals analytically (Maple).
For brevity reasons we do not list the full expressions of the resulting formulae
here, we show only the expression for the third integral:

∫ h

0

∫ δ1

0
ΔV (δ1)ΔV (δ2)K3(δ1, δ2)dδ2dδ1 ≈

( V̂ 2
2 + V̂ 2

4 − V̂ 2
3 − V̂ 2

1 + 2(V̂4V̂2 − V̂3V̂1)
4Zh

+
190V̂ 2

4 − V̂ 2
1 + 15V̂ 2

2 − 66V̂ 2
3

4Z2
h

+
−42V̂3V̂1 + 156V̂4V̂2

4Z2
h

+
9V̂ 2

2 − 405V̂ 2
3 + 4335V̂ 2

4 − 30V̂3V̂1 + 1110V̂4V̂2

4Z3
h

+
−225V̂ 2

3 +20475V̂ 2
4 +630V̂4V̂2

4Z4
h

+
11025V̂ 2

4

4Z5
h

)
η̂0+

( V̂ 2
1 − 3V̂ 2

2 + 6V̂ 2
3 − 10V̂ 2

4

4Z2
h

+
7V̂3V̂1 − 13V̂4V̂2

4Z2
h

+
−1110V̂ 2

4 − 270V̂4V̂2 + 30V̂3V̂1 − 9V̂ 2
2 + 105V̂ 2

3

4Z3
h

+
225V̂ 2

3 − 630V̂4V̂2 − 5775V̂ 2
4

4Z4
h

− 11025V̂ 2
4

4Z5
h

)
ξ̂

+
−V̂ 2

2 /20 − V̂ 2
1 /12 − V̂ 2

3 /28 − V̂ 2
4 /36

Zh
+

−7V̂4V̂2 − 5V̂3V̂1

4Z2
h

.

(21)

As shown in [12] the inclusion of this second Magnus term leads to an eighth-
order algorithm. Next we consider the approximation of σ3 and σ4 in order to
have a tenth-order scheme. The same procedure is applied again: the function
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ΔV appearing in the expressions for σ3 and σ4 is replaced by a polynomial. By
symbolic computation it can be shown that it is sufficient here to replace ΔV (δ)
by a third-degree polynomial. Therefore we take ΔV (δ) ≈

∑3
s=1 Vsh

sP ∗
s (δ/h),

where the coefficients Vs are still the same as the ones before. Also only the terms
where the degree in h is smaller than 11 have to be considered: e.g. we do not
take into account the V̂ 3

3 -term. We used the symbolic software package Maple
to compute the expressions of the 2 by 2 matrix ς = σ3 + σ4. As an illustration,
we show some terms of the diagonal elements:

ς11 =−ς22 =
(135V̂ 2

1 V̂2 + 49V̂ 3
2 + 240V̂1V̂3V̂2 + 45V̂ 3

1 + 150V̂ 2
1 V̂3 + 123V̂1V̂

2
2

480Z2
h

+
961V̂ 2

1 V̂2+105V̂ 3
1 + 8382V̂1V̂3V̂2+2475V̂ 2

1 V̂3 + 2025V̂1V̂
2
2 +1161V̂ 3

2

96Z3
h

+
5859V̂1V̂

2
2 +59662V̂1V̂3V̂2 + 7245V̂ 2

1 V̂3 + 8055V̂ 3
2 + 736V̂ 2

1 V̂2

32Z4
h

+
549V̂ 3

2 + 16305V̂1V̂3V̂2/4
Z5

h

)
ξ̂ + . . .

(22)

The formulas in (17), (21) and (22) may be problematic for E close to V̄ due
to near-cancellation of like terms. Therefore alternative formulas are used for
small Zh values (see [12]). These alternative formulas are obtained by applying
a Taylor expansion. The alternative for expression (17) is then e.g.

1
h

∫ h

0
ΔV (δ)δη0(Z2δ)dδ ≈

(V̂1/3 + V̂2/15)Zh + (V̂3/105 + 4V̂2/105 + 4V̂1/45 + V̂4/945)Z2
h

+ (2V̂3/945 + V̂2/189 + V̂1/105 + 2V̂4/3465)Z3
h + . . .

(23)

The alternative formulae are used in the interval |Zh| < 0.15, in this case it is
found that it is sufficient to go up to Z8

h.

4 Shooting for Eigenvalues

As mentioned before, a shooting procedure can be used to locate the eigenval-
ues of the boundary value problem associated with (1). The modified Magnus
method presented here is well suited for the repeated solution of the initial value
problems which appear in the shooting procedure. These initial value problems
are solved for a fixed potential V but for different values of E. For our modified
Magnus integrator, a mesh can be constructed which only depends on V and
not on E (a procedure similar as in [12] can be used to construct the mesh).
This mesh has to be computed only once and is then used in all eigenvalue
computations. Moreover the value V̄ and the coefficients Vs are computed and
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Algorithm 1. A Sturm-Liouville solver based on a modified Magnus method
1: Use stepsize selection algorithm to construct mesh a = x0 < x1 < ... < xn = b
2: for i = 1 to n do
3: Compute V̄ and Vs, s = 1, . . . , 4 for the ith interval (Gauss-Legendre with 5

nodes).
4: end for
5: Choose a meshpoint xm (0 ≤ m ≤ n) as the matching point.
6: Set up initial values for yL satisfying the BC at a and initial values for yR satisfying

the BC at b. Choose a trial value for E.
7: repeat
8: for i = 0 to m − 1 do
9: yL(xi+1) = ehiĀeσ(hi)yL(xi)

10: end for
11: for i = n down to m + 1 do
12: yR(xi−1) = e−σ(hi)e−hiĀyR(xi)

13: end for
14: Adjust E by comparing yL(xm) with yR(xm) (Newton iteration).
15: until E sufficiently accurate

stored once for all before the start of the shooting process. Algorithm 1 shows
the basic shooting procedure in which the modified Magnus algorithm is used
to propagate the left-hand and right-hand solutions. For more details on such a
shooting procedure we refer to [12].

5 Numerical Examples

As test potentials we take two well-known test problems from the literature [17].
The Coffey-Evans problem is a Schrödinger equation with

V (x) = −2β cos(2x) + β2 sin2(2x) (24)

and y(−π/2) = y(π/2) = 0 as boundary conditions. Here we take β = 30. The
second problem is the Woods-Saxon problem defined by

V (x) = −50
1 − 5t

3(1+t)

1 + t
(25)

with t = e(x−7)/0.6 over the interval [0, 15]. The eigenvalue spectrum of this
Woods-Saxon problem contains 14 eigenenergies E0, ..., E13. We take here an
equidistant mesh. Note however that an automatic stepsize selection algorithm
can be constructed as in [12]. We performed some eigenvalue computations at
different step lengths. The absolute errors ΔEk = Eexact

k −Ecomput
k are collected

in Table 1. For the Coffey-Evans problem some lower eigenvalues come in very
close clusters and to distinguish between them the search algorithm must rely
on a highly accurate integrator. Our modified Magnus method deals very well
with these close eigenvalues. Also no systematic deterioration of the accuracy is
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Table 1. Absolute value of (absolute) errors ΔEk for the Coffey-Evans and Woods-
Saxon problem. n is the number of (equidistant) steps. aE-b means a.10−b.

Coffey-Evans problem Woods-Saxon problem
k Ek n = 128 n = 256 k Ek n = 64 n = 128
0 0.0000000000000000 3.4E-10 2.2E-13 0 -49.45778872808258 3.9E-11 8.5E-14
1 117.9463076620687587 1.5E-9 1.4E-12 1 -48.14843042000639 3.8E-10 2.6E-13
2 231.6649292371271088 2.1E-9 1.1E-12 2 -46.29075395446623 2.0E-9 1.6E-12
3 231.6649293129610125 1.1E-9 1.1E-12 3 -43.96831843181467 7.2E-9 6.3E-12
4 231.6649293887949167 2.1E-9 7.9E-13 4 -41.23260777218090 2.0E-8 1.9E-12
5 340.8882998096130157 4.5E-9 4.4E-12 5 -38.12278509672854 4.8E-8 4.6E-11
6 445.2830895824354620 4.4E-9 3.6E-12 6 -34.67231320569997 9.7E-8 9.7E-11
8 445.2832550313310036 4.4E-9 2.7E-12 7 -30.91224748790910 1.7E-7 1.7E-10
10 637.6822498740469991 4.8E-9 4.2E-12 8 -26.87344891605993 2.8E-7 2.9E-10
15 802.4787986926240517 2.8E-9 1.7E-12 9 -22.58860225769320 3.9E-7 4.3E-10
20 951.8788067965913828 2.3E-9 3.7E-12 10 -18.09468828212811 5.1E-7 5.7E-10
30 1438.2952446408023577 2.0E-9 2.5E-12 11 -13.43686904026007 5.9E-7 6.7E-10
40 2146.4053605398535082 1.5E-9 2.7E-12 12 -8.67608167074520 6.0E-7 7.2E-10
50 3060.9234915114205911 1.0E-9 2.7E-12 13 -3.90823248120989 5.0E-7 6.6E-10

observed as k is increased. This tenth-order method gives of course more accurate
approximations than the eighth order method of [12]: this method gives e.g. for
the first eigenvalue of the Coffey-Evans problem an error of 1.0E-7 (n = 128)
and 4.0E-10 (n = 256).

6 Conclusion

In this paper we discussed a modified Magnus method of order ten for the in-
tegration of a Sturm-Liouville problem in the Schrödinger form. Therefore the
modified Magnus method described earlier by Degani and Schiff and Iserles had
to be extended to the non-oscillatory E < V region and a Filon-like quadrature
rule had to be defined for the multivariate integrals appearing in the Magnus
series. The modified Magnus method can be applied in a shooting procedure
in order to compute the eigenvalues of a boundary value problem. Since an
E-independent mesh can be constructed, all function evaluations can be done
before the actual shooting process, which makes the method well suited to com-
pute large batches of eigenvalues or just particularly large eigenvalues.
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