Skip to main content

Abstract

Optical projection tomography (OPT) is a relatively new technology that is especially well suited to the 3D imaging of “mesoscopic” specimens (those from about 1 to 10 mm across). It is fundamentally different from optical sectioning techniques such as confocal microscopy, since it does not attempt to limit data acquisition to a narrow focused 2D plane. Instead, it is an optical equivalent of computed tomography (CT), in which projection images are captured for many angles around the specimen and the 3D results are calculated using a back-projection algorithm. Volumetric data sets can be generated from both bright-field and fluorescent images. OPT has seen the development of a wide range of applications over the last five years, especially in the field of developmental biology, and increasingly for the analysis of whole mouse organs (such as the pancreas, brain and lungs). Within these contexts, it is particularly useful for mapping gene expression patterns at both RNA and protein levels. In this chapter, both the principles of the technology and the range of applications will be introduced. A few potential directions for the future will be summarized at the end.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alanentalo T, Asayesh A, Morrison H, Loren CE, Holmberg D, Sharpe J, Ahlgren U (2007) Tomo-graphic molecular imaging and 3D quantification within adult mouse organs. Nat Methods 4:31–33

    Article  PubMed  CAS  Google Scholar 

  • Arques CG, Doohan R, Sharpe J, Torres M (2007) Cell tracing reveals a dorsoventral lineage restriction plane in the mouse limb bud mesenchyme. Development 134:3173–3722

    Article  Google Scholar 

  • Asayesh A, Sharpe J, Watson RP, Hecksher-Sørensen J, Hastie ND, Hill RE, Ahlgren U (2006) Spleen versus pancreas: strict control of organ interrelationship revealed by analyses of Bapx1-/- mice. Genes Dev 20:2208–2213

    Article  PubMed  CAS  Google Scholar 

  • Baldock RA, Bard JBL, Burger A, Burton N, Christiansen J, Feng G, Hill R, Houghton D, Kaufman M, Rao J, Sharpe J, Ross A, Stevenson P, Venkataraman S, Waterhouse A, Yang Y, Davidson DR (2003) EMAP and EMAGE: a framework for understanding spatially organized data. Neuroinformatics 1:309–325

    Article  PubMed  Google Scholar 

  • Boot M, Westerberg H, Sanz-Esquerro J, Schweitzer R, Cotterell J, Torres M, Sharpe J (2008) In vitro whole-organ imaging: Quantitative 4D analysis of growth and dynamic gene expression in mouse limb buds. Nature Methods 5:609–612

    Article  PubMed  CAS  Google Scholar 

  • Bryson-Richardson RJ, Berger S, Schilling TF, Hall TE, Cole NJ, Gibson AJ, Sharpe J, Currie PD (2007) FishNet: an online database of zebrafish anatomy. BMC Biol 5:34

    Article  PubMed  Google Scholar 

  • Coultas L, Chawengsaksophak K, Rossant J (2005) Endothelial cells and VEGF in vascular development. Nature 438:937–945

    Article  PubMed  CAS  Google Scholar 

  • Davies JA, Armstrong J (2006) The anatomy of organogenesis: novel solutions to old problems. Progr Histochem Cytochem 40:165–176

    Article  Google Scholar 

  • DeLaurier A, Schweitzer R, Logan M (2006) Pitx1 determines the morphology of muscle, tendon, and bones of the hindlimb. Dev Biol 299:22–34

    Article  PubMed  CAS  Google Scholar 

  • Dhenain D, Ruffins S, Jacobs RE (2001) Three-dimensional digital mouse atlas using high-resolution MRI. Dev Biol 232:458–470

    Article  PubMed  CAS  Google Scholar 

  • Dickinson ME (2006) Multimodal imaging of mouse development: tools for the postgenomic era. Dev Dyn 235:2386–2400

    Article  PubMed  Google Scholar 

  • Dickinson ME, Bearman G, Tilie S, Lansford R, Fraser SE (2001) Multi-spectral imaging and linear unmixing add a whole new dimension to laser scanning flourescence microscopy. Biotechniques 31:1274–1278

    Google Scholar 

  • Fisher ME, Clelland AK, Bain A, Baldock RA, Murphy P, Downie H, Tickle C, Davidson DR, Buckland RA (2008) Integrating technologies for comparing 3D gene expression domains in the developing chick limb. Dev Biol 317:13–23

    Article  PubMed  CAS  Google Scholar 

  • Gibson AP, Hebden JC, Arridge SR (2005) Recent advances in diffuse optical imaging. Phys Med Biol 50:R1–R43

    Article  PubMed  CAS  Google Scholar 

  • Hajihosseini MK, Langhe S, Lana-Elola E, Morrison H, Sparshott N, Kelly R, Sharpe J, Rice D, Bellusci S (2008a) Localization and fate of Fgf10-expressing cells in the adult mouse brain implicate Fgf10 in control of neurogenesis. Mol Cell Neurosci 37:857–868

    Article  CAS  Google Scholar 

  • Hajihosseini MK, Duarte R, Pegrum J, Donjacour A, Lana-Elola X, Rice D, Sharpe J, Dickson C (2008b) Evidence that Fgf10 contributes to the skeletal and visceral defects of an Apert syndrome mouse model. Dev Dyn (online publication: 4 Sep 2008)

    Google Scholar 

  • Hart AW, Morgan JE, Schneider J, West K, McKie L, Bhattacharya S, Jackson IJ, Cross SH (2006) Cardiac malformations and midline skeletal defects in mice lacking filamin A. Human Mol Genet 15:2457–2467

    Article  CAS  Google Scholar 

  • Hecksher-Sørensen J, Sharpe J (2001) 3D confocal reconstruction of gene expression in mouse. Mech Dev 100:59–63

    Article  PubMed  Google Scholar 

  • Hecksher-Sørensen J, Watson RP, Lettice LA, Serup P, Eley L, De Angelis C, Ahlgren U, Hill RE (2004) The splanchnic mesodermal plate directs spleen and pancreatic laterality, and is regulated by Bapx1/Nkx3.2 Development 131:4665–4675

    Article  PubMed  Google Scholar 

  • Huang D, Swanson E, Lin C, Schuman J, Stinson W, Chang W, Hee M, Flotte T, Gregory K, Puliafito C, Fujimoto J (1991) Optical coherence tomography. Science 254:1178–1181

    Article  PubMed  CAS  Google Scholar 

  • Huisken J, Swoger J, Del Bene F, Wittbrodt J, Steltzer E (2004) Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305:1007–1009

    Article  PubMed  CAS  Google Scholar 

  • Jenkins M, Pankti P, Huayun D, Monica MM, Michiko W, Andrew MR (2007) Phenotyp-ing transgenic embryonic murine hearts using optical coherence tomography. Appl Opt 46:1776–1781

    Article  PubMed  Google Scholar 

  • Johnson J, Mark SH, Isabel W, Lindsey JH, Christopher RJ, Greg MJ, Mario RC, Charles K (2006) Virtual histology of transgenic mouse embryos for high-throughput phenotyping. PLoS Genet 2(4):e61

    Article  PubMed  Google Scholar 

  • Kak AC, Slaney M (1988) Principles of computerized tomographic imaging. IEEE, New York

    Google Scholar 

  • Kerwin J, Scott M, Sharpe J, Puelles L, Robson S, Mart*#x00ED;nez-de-la-Torre M, Feran JL, Feng G, Baldock R, Strachan T, Davidson D, Lindsay S (2004) 3-Dimensional modelling of early human brain development using optical projection tomography. BioMedCentral Neurobiology 5:27

    Google Scholar 

  • Kulesa PM, Fraser SE (1998) Confocal imaging of living cells in intact embryos. In: Paddock SW (ed) Confocal microscopy: methods and protocols (Methods in Molocular Biology 122). Humana, Totowa, NJ

    Google Scholar 

  • Lee K, Avondo J, Morrison H, Blot L, Stark M, Sharpe J, Bangham A, Coen E (2006) Visualizing plant development and gene expression in three dimensions using optical projection tomography. Plant Cell 18:2145–2156

    Article  PubMed  CAS  Google Scholar 

  • Lickert H, Takeuchi JK, Von Both I, Walls JR, McAuliffe F, Adamson SL, Henkelman RM, Wrana JL, Rossant J, Bruneau BG (2004) Baf60c is essential for function of BAF chromatin remodelling complexes in heart development. Nature 432:107–112

    Article  PubMed  CAS  Google Scholar 

  • Louie AY, Huber MM, Ahrens ET, Rothbacher U, Moats R, Jacobs RE, Fraser SE, Meade TJ (2000) In vivo visualization of gene expression using magnetic resonance imaging. Nat Biotechnol 18:321–325

    Article  PubMed  CAS  Google Scholar 

  • Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17:545–580

    Article  PubMed  CAS  Google Scholar 

  • McGurk L, Morrison H, Keegan LP, Sharpe J, O'Connell MA (2007) Three-dimensional imaging of Drosophila melanogaster. PLoS ONE 2(9):e834

    Article  PubMed  Google Scholar 

  • Ntziachristos V, Ripoll J, Wang LV, Weissleder R (2005) Looking and listening to light: the evolution of whole-body photonic imaging. Nat Biotechnol 23:313–320

    Article  PubMed  CAS  Google Scholar 

  • Potter SM, Fraser SE, Pine J (1996) The greatly reduced photodamage of 2-photon microscopy enables extended 3-dimensional time-lapse imaging of living neurons. Scanning 18:147

    Google Scholar 

  • Pryce BA, Brent AE, Murchison ND, Tabin CJ, Schweitzer R (2007) Generation of transgenic tendon reporters, ScxGFP and ScxAP, utilizing regulatory elements of the Scleraxis gene. Dev Dyn 236:1677–1682

    Article  PubMed  CAS  Google Scholar 

  • Requejo-Isidro J, McGinty J, Munro I, Elson DS, Galletly NP, Lever MJ, Neil MA, Stamp GW, French PM, Kellett PA, Hares JD, Dymoke-Bradshaw AK (2004) High-speed wide-field time-gated endoscopic fluorescence-lifetime imaging. Opt Lett 29:2249

    Article  PubMed  CAS  Google Scholar 

  • Rinaldi A (2005) A bloodless revolution—a growing interest in artificial blood substitutes has resulted in new products that could soon improve transfusion medicine. EMBO Rep 6:705–708

    Article  PubMed  CAS  Google Scholar 

  • Risebro CA, Smart N, Dupays L, Breckenridge R, Mohun TJ, Riley PR (2006) Hand1 regulates cardiomyocyte proliferation versus differentiation in the developing heart. Development 133:4595–4606

    Article  PubMed  CAS  Google Scholar 

  • Ruijter JM, Soufan AT, Hagoort J, Moorman AF (2004) Molecular imaging of the embryonic heart: fables and facts on 3D imaging of gene expression patterns. Birth Defects Res C Embryo Today 72:224–240

    Article  PubMed  CAS  Google Scholar 

  • Sakhalkar HS, Dewhirst M, Oliver T, Cao Y, Oldham M (2007) Functional imaging in bulk tissue specimens using optical emission tomography: fluorescence preservation during optical clearing. Phys Med Biol 52:2035–2054

    Article  PubMed  CAS  Google Scholar 

  • Sarma S, Kerwin J, Puelles L, Scott M, Strachan T, Feng G, Sharpe J, Davidson D, Baldock R, Lindsay S (2005) 3D modelling, gene expression mapping and post-mapping image analysis in the developing human brain. Brain Res Bull 66:449–453

    Article  PubMed  CAS  Google Scholar 

  • Schneider X, Böse J, Bamforth S, Gruber AD, Broadbent C, Clarke K, Neubauer S, Lengeling A, Bhattacharya S (2004) Identification of cardiac malformations in mice lacking Ptdsr using a novel high-throughput magnetic resonance imaging technique. BMC Dev Biol 4:16

    Article  PubMed  Google Scholar 

  • Sharpe J (2003) Optical projection tomography as a new tool for studying embryo anatomy. J Anat 202:175–181

    Article  PubMed  Google Scholar 

  • Sharpe J (2004) Optical projection tomography. Annu Rev Biomed Eng 6:209–228

    Article  PubMed  CAS  Google Scholar 

  • Sharpe J (2005) Optical projection tomography: imaging 3D organ shapes and gene expression patterns in whole vertebrate embryos. In: Yuste X, Konnerth X (eds) Imaging in neuroscience and development. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Sharpe J, Ahlgren U, Perry P, Hill B, Ross A, Hecksher-Sørensen J, Baldock R, Davidson D (2002) Optical projection tomography as a tool for 3D microscopy and gene expression studies. Science 296:541–545

    Article  PubMed  CAS  Google Scholar 

  • Summerhurst K, Stark M, Sharpe J, Davidson D, Murphy P (2008) 3D representation of Wnt and Frizzled gene expression patterns in the mouse embryo at embryonic day 11.5 (Ts19). Gene Expression Patterns 8:331–348

    Article  PubMed  CAS  Google Scholar 

  • Tickle C (2004) The contribution of chicken embryology to the understanding of vertebrate limb development. Mechanisms Dev 121:1019–1029

    Article  PubMed  CAS  Google Scholar 

  • Walls JR, Sled JG, Sharpe J, Henkelman RM (2005) Correction of artefacts in optical projection tomography. Phys Med Biol 50:1–21

    Article  Google Scholar 

  • Walls JR, Sled JG, Sharpe J, Henkelman RM (2007) Resolution improvement in emission optical projection tomography. Phys Med Biol 52:2775–2790

    Article  PubMed  Google Scholar 

  • Walls J, Coultas L, Rossant J, Henkelman M (2008) Three-dimensional analysis of early embryonic mouse vascular development. PLoS ONE 3(8):e2853

    Article  PubMed  Google Scholar 

  • Wilkie A, Jordan SA, Sharpe J, Price DJ, Jackson IJ (2004) Widespread tangential dispersion and extensive cell death during early neurogenesis in the mouse neocortex. Dev Biol 267:109–118

    Article  PubMed  CAS  Google Scholar 

  • Yoder BK, Mulroy S, Eustace H, Boucher C, Sandford R (2006) Molecular pathogenesis of autosomal dominant polycystic kidney disease Expert Rev Mol Med 8:1–22

    Article  PubMed  Google Scholar 

  • Zuniga A, Haramis AP, McMahon AP, Zeller R (1999) Signal relay by BMP antagonism controls the SHH/FGF4 feedback loop in vertebrate limb buds. Nature 401:598–602

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Sharpe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sharpe, J. (2009). Optical Projection Tomography. In: Sensen, C.W., Hallgrímsson, B. (eds) Advanced Imaging in Biology and Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68993-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68993-5_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68992-8

  • Online ISBN: 978-3-540-68993-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics