Skip to main content

Optical Coherence Tomography: Technique and Applications

  • Chapter
Advanced Imaging in Biology and Medicine

Abstract

Optical coherence tomography (OCT) is a noninvasive optical imaging modality providing real-time video rate images in two and three dimensions of biological tissues with micrometer resolution. OCT fills the gap between ultrasound and confocal microscopy, since it has a higher resolution than ultrasound and a higher penetration than confocal microcopy. Functional extensions are also possible, i.e., flow, birefringence or spectroscopic measurements with high spatial resolution. In ophthalmology, OCT is accepted as a clinical standard for diagnosing and monitoring the treatment of a number of retinal diseases. The potential of OCT in many other applications is currently being explored, such as in developmental biology, skin cancer diagnostics, vulnerable plaque detection in cardiology, esophageal diagnostics and a number of other applications within oncology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bechara FG, Gambichler T, Stucker M et al. (2004) Histomorphologic correlation with routine histology and optical coherence tomography. Skin Res Technol 10:169–173

    Article  PubMed  CAS  Google Scholar 

  • Bizheva K, Pflug R, Hermann B et al. (2006) Optophysiology: Depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography. Proc Natl Acad Sci USA 103:5066–5071

    Article  PubMed  CAS  Google Scholar 

  • Boppart SA, Brezinsky ME, Bouma BE et al. (1996) Investigation of developing embryonic morphology using optical coherence tomography. Dev Biol 177:54–63

    Article  PubMed  CAS  Google Scholar 

  • Boppart SA, Tearney GJ, Bouma BE et al. (1997) Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography. Proc Natl Acad Sci USA 94:4256–4261

    Article  PubMed  CAS  Google Scholar 

  • Boppart SA, Luo W, Marks DL et al. (2004) Optical coherence tomography: feasibility for basic research and image-guided surgery of breast cancer. Breast Cancer Res Treat 84:85–97

    Article  PubMed  Google Scholar 

  • Bouma BE, Tearney GJ (2002) Handbook of optical coherence tomography. Marcel Dekker, New York

    Google Scholar 

  • Brezinski ME (2006) Optical coherence tomography: principles and applications. Elsevier, Amsterdam

    Google Scholar 

  • Brezinski ME (2007) Applications of optical coherence tomography to cardiac and musculoskele-tal diseases: bench to bedside? J Biomed Opt 12:051705

    Article  PubMed  Google Scholar 

  • Cense B, Chen TC, Park BH et al. (2002) In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography. Opt Lett 27:1610–1612

    Article  PubMed  Google Scholar 

  • Cense B, Chen TC, Park BH et al. (2004) Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography. Inv Opth Vis Sci 45:2606–2612

    Article  Google Scholar 

  • Chen ZP, Milner TE, Dave D et al. (1997) Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media. Opt Lett 22:64–66

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Aguirre AD, Hsiung PL et al. (2007) Ultrahigh resolution optical coherence tomography of Barrett's esophagus: preliminary descriptive clinical study correlating images with histology. Endoscopy 39:599–605

    Article  PubMed  CAS  Google Scholar 

  • Choma MA, Sarunic MV, Yang CH et al. (2003) Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt Express 11:2183–2189

    PubMed  Google Scholar 

  • Choma MA, Izatt SD, Wessels RJ et al. (2006) Images in cardiovascular medicine: in vivo imaging of the adult Drosophila melanogaster heart with real-time optical coherence tomography. Circulation 114:e35–e36

    Article  PubMed  Google Scholar 

  • Drexler W (2004) Ultrahigh-resolution optical coherence tomography. J Biomed Opt 9:47–74

    Article  PubMed  Google Scholar 

  • Drexler W, Hitzenberger CK, Baumgartner A et al. (1998) Investigation of dispersion effects in ocular media by multiple wavelength partial coherence interferometry. Exp Eye Res 66:25–33

    Article  PubMed  CAS  Google Scholar 

  • Faber DJ, Mik EG, Aalders MCG et al. (2005) Toward assessment of blood oxygen saturation by spectroscopic optical coherence tomography. Opt Lett 30:1015–1017

    Article  PubMed  CAS  Google Scholar 

  • Fercher AF, Hitzenberger CK, Kamp G et al. (1995) Measurement of intraocular distances by backscattering spectral interferometry. Opt Commun 117:43–48

    Article  CAS  Google Scholar 

  • Fercher AF, Drexler W, Hitzenberger CK et al. (2003) Optical coherence tomography: principles and applications. Rep Prog Phys 66:239–303

    Article  Google Scholar 

  • Gambichler T, Matip R, Moussa G et al. (2006a) In vivo data of epidermal thickness evaluated by optical coherence tomography: effects of age, gender, skin type, and anatomic site. J Derm Sci 44:145–152

    Article  Google Scholar 

  • Gambichler T, Huyn J, Tomi NS et al. (2006b) A comparative pilot study on ultraviolet-induced skin changes assessed by noninvasive imaging techniques in vivo. J Photochem Photobiol 82:1103–1107

    Article  CAS  Google Scholar 

  • Gambichler T, Orlikov A, Vasa R et al. (2006c) In vivo optical coherence tomography of basal cell carcinoma. J Dermatol Sci 45:167–173

    Article  Google Scholar 

  • Gambichler T, Regeniter P, Bechara FG et al. (2007) Characterization of benign and malignant melano-cytic skin lesions using optical coherence tomography in vivo. J Am Acad Dermatol 57:629–637

    Article  PubMed  Google Scholar 

  • Gerger A, Koller S, Weger W et al. (2006) Sensitivity and specificity of confocal laser-scanning microscopy for in vivo diagnosis of malignant skin tumors. Cancer 107:193–200

    Article  PubMed  Google Scholar 

  • Giattina SD, Courtney BK, Herz PR et al. (2006) Assessment of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT). Int J Cardiol 107:400–409

    Article  PubMed  Google Scholar 

  • Giorgi GV, de Stante M, Massi D et al. (2005) Possible histopathologic correlates of dermo-scopic features in pigmented melanocytic lesions identified by means of optical coherence tomography. Exp Dermatol 14:56–59

    Article  PubMed  Google Scholar 

  • Hangai M, Jima Y, Gotoh N et al. (2007) Three-dimensional imaging of macular holes with highspeed optical coherence tomography. Ophthalmology 114:763–773

    Article  PubMed  Google Scholar 

  • Hartl I, Li XD, Chudoba C et al. (2001) Ultrahigh-resolution optical coherence tomography using continuum generation in air-silica microstructure optical fiber. Opt Lett 26:608–610

    Article  PubMed  CAS  Google Scholar 

  • Hecht E (1998) Optics. Addison Wesley, Reading, MA

    Google Scholar 

  • Hee MR, Huang D, Swanson EA et al. (1992) Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging. J Opt Soc Am B 9:903–908

    Article  Google Scholar 

  • Hee MR, Baumal CR, Puliafito CA et al. (1996) Optical coherence tomography of age-related macular degeneration and choroidal neovascularization. Ophthalmology 103:1260–1270

    PubMed  CAS  Google Scholar 

  • Hermann B, Fernandez EJ, Unterhuber AB et al. (2004) Adaptive-optics ultrahigh-resolution optical coherence tomography. Opt Lett 29:2142–2144

    Article  PubMed  CAS  Google Scholar 

  • Hillman TR, Sampson DD (2005) The effect of water dispersion and absorption on axial resolution in ultrahigh-resolution optical coherence tomography. Opt Express 13:1860–1874

    Article  PubMed  Google Scholar 

  • Hoffman JI (1995) Incidence of congenital heart disease, I: postnatal incidence. Pediatr Cardiol 16:103–113

    Article  PubMed  CAS  Google Scholar 

  • Huang D, Swanson EA, Lin CP et al. (1991) Optical coherence tomography. Science 254:1178–1181

    Article  PubMed  CAS  Google Scholar 

  • Huber R, Wojtkowski M, Fujimoto JG et al. (2005) Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm. Opt Express 13:10523–10538

    Article  CAS  PubMed  Google Scholar 

  • Isenberg G, Sivak MV, Chak A et al. (2005) Accuracy of endoscopic optical coherence tomography in the detection of dysplasia in Barrett's esophagus: a prospective, double-blinded study. Gastrointest Endos 62:825–831

    Article  Google Scholar 

  • Izatt JA, Kulkarni MD, Wang H-W et al. (1996) Optical coherence tomography and microscopy in gastrointestinal tissues. IEEE J Sel Top Quant Electr 4:1017–1028

    Article  Google Scholar 

  • Izatt JA, Kulkami MD, Yazdanfar S et al. (1997) In vivo bidirectional color Doppler flow imaging picoliter blood volumes using optical coherence tomography. Opt Lett 22:1439–1441

    Article  PubMed  CAS  Google Scholar 

  • Jang IK, Bouma BE, Kang DH et al. (2002) Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: Comparison with intravascular ultra-sound. J Am Coll Cardiol 39:604–609

    Article  PubMed  Google Scholar 

  • Jang IK, Tearney GJ, MacNeill B et al. (2005) In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography. Circulation 111:1551–1555

    Article  PubMed  Google Scholar 

  • Jenkins MW, Adler DC, Gargesha M et al. (2007) Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered Fourier domain mode locked laser. Opt Express 15:6251–6267

    Article  CAS  PubMed  Google Scholar 

  • Jesser CA, Boppart SA, Pitris C et al. (1999) High resolution imaging of transitional cell carcinoma with optical coherence tomography: feasibility for the evaluation of bladder pathology. Br J Radiol 72:1170–1176

    PubMed  CAS  Google Scholar 

  • Jørgensen TM, Thomadsen J, Christensen U et al. (2007) Enhancing the signal-to-noise ratio in ophthalmic optical coherence tomography by image registration: method and clinical examples. J Biomed Opt 12:041208

    Article  PubMed  Google Scholar 

  • Jørgensen TM, Tycho A, Mogensen M et al. (2008) Machine-learning classification of non-melanoma skin cancers from image features obtained by optical coherence tomography. Skin Res Technol 14:364–369

    Article  PubMed  Google Scholar 

  • Keller BB (1998) Embryonic cardiovascular function, coupling, and maturation: a species view. In: Burggren WW, Keller BB (eds) Development of cardiovascular systems. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Ko TH, Fujimoto JG, Duker JS et al. (2004) Comparison of ultrahigh- and standard-resolution optical coherence tomography for imaging macular hole pathology and repair. Ophthalmology 111:2033–2043

    Article  PubMed  Google Scholar 

  • Korde VR, Bonnema GT, Xu W et al. (2007) Using optical coherence tomography to evaluate skin sun damage and precancer. Las Surg Med 39:687–695

    Article  Google Scholar 

  • Leitgeb RA, Villiger M, Bachmann AH et al. (2006) Fourier domain optical coherence microscopy with extended focus depth. Opt Lett 31:2450–2452

    Article  PubMed  CAS  Google Scholar 

  • Levitz D, Thrane L, Frosz MH et al. (2004) Determination of optical scattering properties of highly-scattering media in optical coherence tomography images. Opt Express 12:249–259

    Article  PubMed  Google Scholar 

  • Lin SJ, Jee SH, Kuo CJ et al. (2006) Discrimination of basal cell carcinoma from normal dermal stroma by quantitative multiphoton imaging. Opt Lett 31:2756–2758

    Article  PubMed  Google Scholar 

  • Liu B, Brezinski ME (2007) Theoretical and practical considerations on detection performance of time domain, Fourier domain, and swept source optical coherence tomography. J Biomed Opt 12:044007

    Article  PubMed  Google Scholar 

  • Low AF, Tearney GJ, Bouma BE et al. (2006) Technology insight: optical coherence tomography: current status and future development. Nat Clin Pract Cardiovasc Med 3:154–162

    Article  PubMed  Google Scholar 

  • Luo W, Nguyen FT, Zysk AM et al. (2005) Optical biopsy of lymph node morphology using optical coherence tomography. Technol Cancer Res Treat 4:539–547

    PubMed  Google Scholar 

  • Luo W, Marks DL, Ralston TS et al. (2006) Three-dimensional optical coherence tomography of the embryonic murine cardiovascular system. J Biomed Opt 11:021014

    Article  PubMed  Google Scholar 

  • Manyak MJ, Gladkova ND, Makari JH et al. (2005) Evaluation of superficial bladder transitional-cell carcinoma by optical coherence tomography. J Endourol 19:570–574

    Article  PubMed  Google Scholar 

  • Mariampillai A, Standish BA, Munce NR et al. (2007) Doppler optical cardiogram gated 2D color flow imaging at 1000 fps and 4D in vivo visualization of embryonic heart at 45 fps on a swept source OCT system. Opt Express 15:1627–1638

    Article  PubMed  Google Scholar 

  • Medeiros FA, Zangwill LM, Bowd C et al. (2005) Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography. Am J Ophthal 139:44–55

    Article  PubMed  Google Scholar 

  • Mogensen M et al. (2007a) Morphology and epidermal thickness of normal skin imaged by optical coherence tomography. Dermatology 217:14–20

    Article  Google Scholar 

  • Mogensen M, Thomsen JB, Skovgaard LT et al. (2007b) Nail thickness measurements using optical coherence tomography and 20 MHz ultrasonography. Br J Derm 157:894–900

    Article  CAS  Google Scholar 

  • Morgener U, Drexler W, Kärtner FX et al. (2000) Spectroscopic optical coherence tomography. Opt Lett 25:111–113

    Article  Google Scholar 

  • Morsy H, Mogensen M, Thomsen J et al. (2007a) Imaging of cutaneous larva migrans by optical coherence tomography. Travel Med Infect Dis 5:243–246

    Article  Google Scholar 

  • Morsy H, Mogensen M, Thrane L et al. (2007b) Imaging of intradermal tattoos by optical coherence tomography. Skin Res Technol 13:444–448

    Article  Google Scholar 

  • Neville JA, Welch E, Leffell DJ (2007) Management of nonmelanoma skin cancer in 2007. Nat Clin Pract Oncol 4:462–469

    Article  PubMed  Google Scholar 

  • Nijssen A, Schut TCB, Heule F et al. (2002) Discriminating Basal cell carcinoma from its surrounding tissue by Raman spectroscopy. J Invest Derm 119:64–69

    Article  PubMed  CAS  Google Scholar 

  • Norozi K, Thrane L, Männer J et al. (2008) In vivo visualisation of coronary artery development by high-resolution optical coherence tomography. Heart 94:130

    Article  PubMed  CAS  Google Scholar 

  • Olmedo JM, Warschaw KE, Schmitt JM et al. (2006) Optical coherence tomography for the characterization of basal cell carcinoma in vivo: A pilot study. J Am Acad Derm 55:408–412

    Article  PubMed  Google Scholar 

  • Olmedo JM, Warschaw KE, Schmitt JM et al. (2007) Correlation of thickness of basal cell carcinoma by optical coherence tomography in vivo and routine histologic findings: A pilot study. Dermatol Surg 33:421–426

    Article  PubMed  CAS  Google Scholar 

  • Pierce MC, Sheridan RL, Park BH et al. (2004) Collagen denaturation can be quantified in burned human skin using polarization-sensitive optical coherence tomography. Burns 30:511–517

    Article  PubMed  Google Scholar 

  • Povazay B, Bizheva K, Unterhuber A et al. (2002) Submicrometer axial resolution optical, coherence tomography. Opt Lett 27:1800–1802

    Article  PubMed  CAS  Google Scholar 

  • Povazay B, Hofer B, Hermann B et al. (2007) Minimum distance mapping using three-dimensional optical coherence tomography for glaucoma diagnosis. J Biomed Opt 12:041204

    Article  PubMed  Google Scholar 

  • Puliafito CA, Hee MR, Lin CP et al. (1995) Imaging of macular diseases with optical coherence tomography. Ophthalmology 102:217–229

    PubMed  CAS  Google Scholar 

  • Sander B, Larsen M, Thrane L et al. (2005) Enhanced optical coherence tomography imaging by multiple scan averaging. Br J Ophthal 89:207–212

    Article  CAS  Google Scholar 

  • Saxer CE, de Boer JF, Park BH et al. (2000) High-speed fiber-based polarization-sensitive optical coherence tomography of in vivo human skin. Opt Lett 25:1355–1357

    Article  PubMed  CAS  Google Scholar 

  • Schuman JS, PedutKloizman T, Hertzmark E et al. (1996) Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography. Ophthalmology 103:1889–1898

    PubMed  CAS  Google Scholar 

  • Spoler F, Kray S, Grychtol P et al. (2007) Simultaneous dual-band ultra-high resolution optical coherence tomography. Opt Express 15:10832–10841

    Article  PubMed  Google Scholar 

  • Steiner R, Kunzi-Rapp K, Scharfetter-Kochaner K (2003) Optical coherence tomography: clinical applications in dermatology. Med Laser Appl 18:249–259

    Article  Google Scholar 

  • Strasswimmer J, Pierce MC, Park BH et al. (2004) Polarization-sensitive optical coherence tomography of invasive basal cell carcinoma. J Biomed Opt 9:292–298

    Article  PubMed  Google Scholar 

  • Stucker M, Esser M, Hoffmann M et al. (2002) High-resolution laser Doppler perfusion imaging aids in differentiating benign and malignant melanocytic skin tumors. Acta Derm 82:25–29

    Article  Google Scholar 

  • Tearney GJ, Yabushita H, Houser SL et al. (2003) Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography. Circulation 107:113–119

    Article  PubMed  Google Scholar 

  • Tearney GJ, Jang IK, Bouma BE (2006) Optical coherence tomography for imaging the vulnerable plaque. J Biomed Opt 11:021002

    Article  PubMed  Google Scholar 

  • Unterhuber A, Povazay B, Hermann B et al. (2005) In vivo retinal optical coherence tomography at 1040 nm-enhanced penetration into the choroid. Opt Express 13:3252–3258

    Article  PubMed  Google Scholar 

  • van Velthoven MEJ, Faber DJ, Verbraak FD et al. (2007) Recent developments in optical coherence tomography for imaging the retina. Prog Retinal Eye Res 26:57–77

    Article  Google Scholar 

  • Waxman I, Raju GS, Critchlow J et al. (2006) High-frequency probe ultrasonography has limited accuracy for detecting invasive adenocarcinoma in patients with Barrett's esophagus and high-grade dysplasia or intramucosal carcinoma: a case series. Am J Gastroent 101:1773–1779

    Article  PubMed  Google Scholar 

  • Welzel J (2001) Optical coherence tomography in dermatology: a review. Skin Res Technol 7:1–9

    Article  PubMed  CAS  Google Scholar 

  • Welzel J, Bruhns M, Wolff HH (2003) Optical coherence tomography in contact dermatitis and psoriasis. Arch Dermatol Res 295:50–55

    Article  PubMed  Google Scholar 

  • White BR, Pierce MC, Nassif N et al. (2003) In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography. Opt Express 11:3490– 3497

    Article  PubMed  Google Scholar 

  • Whiteman SC, Yang Y, van Pittius DG et al. (2006) Optical coherence tomography: Realtime imaging of bronchial airways microstructure and detection of inflammatory/neoplastic morphologic changes. Clin Cancer Res. 12:813–818

    Article  PubMed  CAS  Google Scholar 

  • Wu L (2004) Simultaneous measurement of flow velocity and Doppler angle by the use of Doppler optical coherence tomography. Opt Lasers Eng 42:303–313

    Article  Google Scholar 

  • Yabushita H, Bourna BE, Houser SL et al. (2002) Characterization of human atherosclerosis by optical coherence tomography. Circulation 106:1640–1645

    Article  PubMed  Google Scholar 

  • Yang Y, Whiteman S, van Pittius DG et al. (2004) Use of optical coherence tomography in delineating airways microstructure: comparison of OCT images to histopathological sections. Phys Med Biol 49:1247–1255

    Article  PubMed  Google Scholar 

  • Yazdanfar S, Rollins AM, Izatt JA (2000) Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography. Opt Lett 25:1448–1450

    Article  PubMed  CAS  Google Scholar 

  • Yelbuz TM, Choma MA, Thrane L et al. (2002) Optical coherence tomography: a new high-resolution imaging technology to study cardiac development in chick embryos. Circulation 106:2771–2774

    Article  PubMed  Google Scholar 

  • Zagaynova EV, Streltsova OS, Gladkova ND et al. (2002) In vivo optical coherence tomography feasibility for bladder disease. J Urol 167:1492–1496

    Article  PubMed  Google Scholar 

  • Zawadzki RJ, Jones SM, Olivier SS et al. (2005) Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in-vivo imaging. Opt Express 13:8532–8546

    Article  PubMed  Google Scholar 

  • Zhang Y, Rha JT, Jonnal RS et al. (2005) Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina. Opt Express 13:4792–4811

    Article  PubMed  Google Scholar 

  • Zhao YH, Chen ZP, Saxer C et al. (2000) Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity. Opt Lett 25:114–116

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. E. Andersen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thomsen, J.B. et al. (2009). Optical Coherence Tomography: Technique and Applications. In: Sensen, C.W., Hallgrímsson, B. (eds) Advanced Imaging in Biology and Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68993-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68993-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68992-8

  • Online ISBN: 978-3-540-68993-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics