Skip to main content

Geometric Morphometrics and the Study of Development

  • Chapter
Advanced Imaging in Biology and Medicine

Abstract

Even though developmental biology seeks to provide developmental explanations for morphological variation, the quantification of morphological variation has been regarded as peripheral to the mechanistic study of development. In this chapter, we argue that this is now changing because the rapidly advancing knowledge of development in post-genomic biology is creating a need for more refined measurements of the morphological changes produced by genetic perturbations or treatments. This need, in turn, is driving the development of new morphometric methods that allow the rapid and meaningful integration of molecular, cellular and morphometric data. We predict that such integration will offer new ways of looking at development, which will lead to significant advances in the study of dysmorphology and also the relationship between the generation of variation through development and its transformation through evolutionary history.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aherne WA, Camplejohn RS, Wright NA (1977) An introduction to cell population kinetics. Edward Arnold, London

    Google Scholar 

  • Aioub M, Lezot F, Molla M et al (2007) Msx2 –/– transgenic mice develop compound amelogenesis imperfecta, dentinogenesis imperfecta and periodental osteopetrosis. Bone 41:851–859

    Article  PubMed  CAS  Google Scholar 

  • Beresford MJ,Wilson GD, Makris A (2006) Measuring proliferation in breast cancer: practicalities and applications. Breast Cancer Res 8:216

    Article  PubMed  Google Scholar 

  • Bookstein FL (1991) Morphometric tools for landmark data. Cambridge University Press, Cambridge

    Google Scholar 

  • Bookstein FL (1997) Landmark methods for forms without landmarks: morphometrics of group differences in outline shape. Med Image Anal 1:225–243

    Article  PubMed  CAS  Google Scholar 

  • Bogue M (2003) Mouse Phenome Project: understanding human biology through mouse genetics and genomics. J Appl Physiol 95(4):1335–1337

    PubMed  CAS  Google Scholar 

  • Boughner JC, Wat S, Diewert VM, Young NM, Browder LW, Hallgr′ýmsson B (2008) The Crf4 mutation and the developmental basis for variation in facial length. Anat Rec Part A. Submitted for publication

    Google Scholar 

  • Cheverud JM, Ehrich TH, Vaughn TT, Koreishi SF, Linsey RB, Pletscher LS (2004) Pleiotropic effects on mandibular morphology II: differential epistasis and genetic variation in morphological integration. J Exp Zoolog Part B Mol Dev Evol 302:424–435

    Article  CAS  Google Scholar 

  • Cooper DM, Turinsky AL, Sensen CW, Hallgrimsson B (2003) Quantitative 3D analysis of the canal network in cortical bone by micro-computed tomography. Anat Rec B New Anat 274:169–179

    Article  PubMed  CAS  Google Scholar 

  • Cooper DML, Thomas CDL, Clement JG, Hallgrimsson B (2006) Three-dimensional microcomputed tomography imaging of basic multicellular unit-related resorption spaces in human cortical bone. Anat Rec Part A 288A:806–816

    Article  Google Scholar 

  • Dryden IL, Mardia KV (1998) Statistical shape analysis. Wiley, Chichester

    Google Scholar 

  • Ehrich TH, Vaughn TT, Koreishi SF, Linsey RB, Pletscher LS, Cheverud JM (2003) Pleiotropic effects on mandibular morphology I. Developmental morphological integration and differential dominance. J Exp Zoolog B Mol Dev Evol 296:58–79

    PubMed  Google Scholar 

  • Feldkamp LA, Goldstein SA, Parfitt AM, Jesion G, Kleerekoper M (1989) The direct examination of three-dimensional bone architecture in vitro by computed tomography. J Bone Miner Res 4:3–11

    Article  PubMed  CAS  Google Scholar 

  • Grubb SC, Churchill GA, Bogue MA (2004) A collaborative database of inbred mouse strain characteristics. Bioinformatics 20(16):2857–2859

    Article  PubMed  CAS  Google Scholar 

  • Gunz P, Mitteroecker P, Bookstein FL (2005) Semilandmarks in three dimensions. In: Slice DE (ed) Modern morphometrics in physical anthropology. Kluwer/Plenum, New York, pp 73–98

    Chapter  Google Scholar 

  • Hildebrand T, Ruegsegger P (1997) A new method for the model-independent assessment of thickness in three-dimensional images. J Microsc 185:67–75

    Article  Google Scholar 

  • Kendall D (1977) The diffusion of shape. Adv Appl Prob 9:428–430

    Article  Google Scholar 

  • Klingenberg CP (2002) Morphometrics and the role of the phenotype in studies of the evolution of developmental mechanisms. Gene 287:3–10

    Article  PubMed  CAS  Google Scholar 

  • Klingenberg CP (2008) MorphoJ software. Faculty of Life Sciences, University of Manchester. http://www.flywings.org.uk/MorphoJ page.htm

  • Klingenberg C, Leamy L, Routman E, Cheverud J (2001a) Genetic architecture of mandible shape in mice. Effects of quantitative trait loci analyzed by geometric morphometrics. Genetics 157:785–802

    CAS  Google Scholar 

  • Klingenberg CP, Badyaev A, Sawry SM, Beckwith NJ (2001b) Inferring developmental modularity from morphological integration: analysis of individual variation and asymmetry in bumblebee wings. Am Natural 157:11–23

    Article  CAS  Google Scholar 

  • Klingenberg CP, Leamy LJ, Cheverud JM (2004) Integration and modularity of quantitative trait locus effects on geometric shape in the mouse mandible. Genetics 166:1909–1921

    Article  PubMed  CAS  Google Scholar 

  • Kristensen E, Parsons TE, Gire J, Hallgrimsson B, Boyd S (2008) A novel highthroughput morphological method for phenotypic analysis. IEE Comput Graphics Appl. doi:10.1109/TBME.2008.923106

    Google Scholar 

  • Lele S (1993) Euclidean distance matrix analysis of landmark data: estimation of mean form and mean form difference. Math Geol 25:573–602

    Article  Google Scholar 

  • Lele S, Richtsmeier JT (1991) Euclidean distance matrix analysis: a coordinate-free approach for comparing biological shapes using landmark data. Am J Phys Anthropol 86:415–427

    Article  PubMed  CAS  Google Scholar 

  • Lele S, Richtsmeier JT (2001) An invariant approach to the statistical analysis of shapes. Chapman & Hall, Boca Raton, FL

    Google Scholar 

  • Mak KK, Kronenberg HM, Chuang P-T, Mackemand S, Yang Y (2008) Indian hedgehog signals independently of PTHrP to promote chondrocyte hypertrophy. Development 135(11):1947–1956

    Article  PubMed  CAS  Google Scholar 

  • Marcus LF (1990) Traditional Morphometrics. In: Rohlf FJ, and Bookstein FL, editors. Proceedings of theMichiganMorphometricsWorkshop. Ann Arbor,Michigan: University ofMichigan, Museum of Zoology

    Google Scholar 

  • Miyake T, Cameron AM, Hall BK (1996) Detailed staging of inbred C57BL/6 mice between Theiler's [1972] stages 18 and 21 (11–13 days of gestation) based on craniofacial development. J Craniofacial Genet Develop Biol 16:1–31

    CAS  Google Scholar 

  • Paigen K, Eppig JT (2000) A mouse phenome project. Mamm Genome 11(9):715–717

    Article  PubMed  CAS  Google Scholar 

  • Parsons TE, Kristensen E, Hornung L et al (2008) Phenotypic variability and craniofacial dysmorphology: increased shape variance in a mouse model for cleft lip. J Anat 212(2):135–143

    Article  PubMed  Google Scholar 

  • Richtsmeier JT, Deleon VB, Lele S (2002) The promise of geometric morphometrics. Yearbook Phys Anthropol 45:63–91

    Article  Google Scholar 

  • Rohlf FJ, Bookstein FL (1990) Proceedings of the Michigan Morphometrics Workshop.U. Michigan Museum of Zoology, Ann Arbor, MI Rohlf FJ, Slice DE (1990) Extensions of the Procrustes method for the optical superimposition of landmarks. Syst Zool 39:40–59

    Google Scholar 

  • Roth VL (2000) Morphometrics in development and evolution. Am Zool 40:801–810

    Article  Google Scholar 

  • Rüegsegger P, Koller B, Müller R (1996) A microtomographic system for the nondestructive evaluation of bone architecture. Calcif Tissue Int 58:24–29

    Article  PubMed  Google Scholar 

  • Sharpe J, Ahlgren U, Perry P et al (2002) Optical projection tomography as a tool for 3D microscopy and gene expression studies. Science 296:541–545

    Article  PubMed  CAS  Google Scholar 

  • Shuman JB, Gong SG (2007) RNA interference of Bmp-4 and midface development in postimplantation mouse embryos. Am J Orthod Dentofacial Orthop 131:447, e1–e11

    Article  PubMed  Google Scholar 

  • Sim JH, Puria S (2008) Soft tissue morphometry of the malleus-incus complex from micro-CT imaging. J Assoc Res Otolaryngol 9:5–21

    Article  PubMed  Google Scholar 

  • Soufan AT, van den Berg G, Moerland PD et al (2007) Three-dimensional measurement and visualization of morphogenesis applied to cardiac embryology. J Microsc 225:269–274

    Article  PubMed  CAS  Google Scholar 

  • Vasquez SX, Hansen MS, Bahadur AN et al (2008) Optimization of volumetric computed tomography for skeletal analysis of model genetic organisms. Anat Rec (Hoboken) 291:475–487

    Google Scholar 

  • Wang K-Y, Diewert VM (1992) A morphometric analysis of craniofacial growth in cleft lip and noncleft mice. J Craniofacial Genet Develop Biol 12:141–154

    CAS  Google Scholar 

  • Zelditch ML, Swiderski HD, Sheets D, Fink WL (2004) Geometric morphometrics for biologists: a primer. Academic, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Benedikt Hallgrímsson , Andrei Turinsky or Christoph W. Sensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hallgrímsson, B., Boughner, J.C., Turinsky, A., Parsons, T.E., Logan, C., Sensen, C.W. (2009). Geometric Morphometrics and the Study of Development. In: Sensen, C.W., Hallgrímsson, B. (eds) Advanced Imaging in Biology and Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68993-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68993-5_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68992-8

  • Online ISBN: 978-3-540-68993-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics