Skip to main content

Image-Based Finite Element Analysis

  • Chapter
Advanced Imaging in Biology and Medicine

Abstract

Finite element (FE) analysis is a nondestructive simulation tool that can estimate mechanical properties of biomaterials when combined with 3D imaging modalities such as micro-computed tomography. This chapter will review state-of-the-art FE methods that use micro-CT to generate subject-specific models for application to large cohorts of experimental animal studies, and most recently for patient studies. Methods used to automatically generate FE meshes, and recent developments that improve the accuracy of these meshes, as well as advances in the acquisition of material properties for FE modeling and the incorporation of constitutive material properties into models will be discussed. The application of this technology for in vivo micro-CT is particularly exciting because it provides a method to noninvasively estimate strength, and this can provide valuable information for monitoring disease progress and treatment efficacy. The field is still in the early stages, and there are significant opportunities to advance this unique combination of imaging and modeling technologies to provide new insights into strength-related issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bayraktar HH, Morgan EF, Niebur GL et al. (2004) Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. J Biomech 37(1):27–35

    Article  PubMed  Google Scholar 

  • Bourne BC, van der Meulen MC (2004) Finite element models predict cancellous apparent modulus when tissue modulus is scaled from specimen CT-attenuation. J Biomech 37(5):613–621

    Article  PubMed  Google Scholar 

  • Boyd SK, Müller R (2006) Smooth surface meshing for automated finite element model generation from 3D image data. J Biomech 39(7):1287–1295

    Article  PubMed  Google Scholar 

  • Boyd SK, Müller R, Zernicke RF (2002) Mechanical and architectural bone adaptation in early stage experimental osteoarthritis. J Bone Miner Res 17(4):687–694

    Article  PubMed  Google Scholar 

  • Boyd SK, Davison P, Müller R et al. (2006) Monitoring individual morphological changes over time in ovariectomized rats by in vivo micro-computed tomography. Bone 39(4):854–862

    Article  PubMed  Google Scholar 

  • Charras GT, Guldberg RE (2000) Improving the local solution accuracy of large-scale digital image-based finite element analyses. J Biomech 33(2):255–259

    Article  PubMed  CAS  Google Scholar 

  • Chevalier Y, Charlesbois M, Varga P et al. (2007) A novel patient-specific finite element model to predict damage accumulation in vertebral bodies under axial compression. 29th American Society of Bone and Mineral Research Annual Meeting, Honolulu, HI, 16–19 Sept. 2007, 22:S484

    Google Scholar 

  • Cody DD, Gross GJ, Hou FJ et al. (1999) Femoral strength is better predicted by finite element models than QCT and DXA. J Biomech 32(10):1013–1020

    Article  PubMed  CAS  Google Scholar 

  • Cowin SC (2001) Mechanics of materials. In: Cowin SC (ed) Bone mechanics handbook, 2nd edn. CRC Press, Washington, DC, pp 6.1–6.24

    Google Scholar 

  • Crawford RP, Cann CE, Keaveny TM (2003) Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone 33(4):744–750

    Article  PubMed  Google Scholar 

  • Eckstein F, Matuura M, Kuhn V et al. (2007) Sex differences of human trabecular bone microstructure in aging are site-dependent. J Bone Miner Res 22(6):817–824

    Article  PubMed  Google Scholar 

  • Fenech CM, Keaveny TM (1999) A cellular solid criterion for predicting the axial-shear failure properties of bovine trabecular bone. J Biomech Eng 121(4):414–422

    Article  PubMed  CAS  Google Scholar 

  • Guldberg RE, Hollister SJ, Charras GT (1998) The accuracy of digital image-based finite element models. J Biomech Eng 120(2):289–295

    Article  PubMed  CAS  Google Scholar 

  • Hodgkinson R, Currey JD (1992) Young's modulus, density and material properties in cancellous bone over a large density range. J Mater Sci: Mater Med 3:377–381

    Article  Google Scholar 

  • Hoffler CE, Guo XE, Zysset PK et al. (2005) An application of nanoindentation technique to measure bone tissue lamellae properties. J Biomech Eng 127(7):1046–1053

    Article  PubMed  Google Scholar 

  • Hollister SJ, Riemer BA (1993) Digital image based finite element analysis for bone microstruc-ture using conjugate gradient and Gaussian filter techniques. Math Meth Med Imag II, SPIE 2035:95–106

    Google Scholar 

  • Homminga J, Huiskes R, Van Rietbergen B et al. (2001) Introduction and evaluation of a gray-value voxel conversion technique. J Biomech 34(4):513–517

    Article  PubMed  CAS  Google Scholar 

  • Hulme PA, Ferguson SJ, Boyd SK (2008) Determination of vertebral endplate deformation under load using micro-computed tomography. J Biomech 41(1):78–85

    Article  PubMed  CAS  Google Scholar 

  • Keaveny TM, Hayes WC (1993) A 20-year perspective on the mechanical properties of trabecular bone. J Biomech Eng 115(4B):534–542

    Article  PubMed  CAS  Google Scholar 

  • Keaveny TM, Donley DW, Hoffmann PF et al. (2007) Effects of teriparatide and alendronate on vertebral strength as assessed by finite element modeling of QCT scans in women with osteoporosis. J Bone Miner Res 22(1):149–157

    Article  PubMed  CAS  Google Scholar 

  • Keyak JH, Rossi SA (2000) Prediction of femoral fracture load using finite element models: an examination of stress- and strain-based failure theories. J Biomech 33(2):209–214

    Article  PubMed  CAS  Google Scholar 

  • MacNeil JA, Boyd SK (2007a) Load distribution and the predictive power of morphological indices in the distal radius. Bone 41:129–137

    Article  Google Scholar 

  • MacNeil JA, Boyd SK (2007b) Improved reproducibility of high resolution peripheral quantitative computed tomography for measurement of bone quality. Med Eng Phys 29(10):1096–1105

    Article  Google Scholar 

  • MacNeil JA, Boyd SK (2008) Bone strength at the distal radius can be estimated from high-resolution peripheral quantitative computed tomography and the finite element method. Bone 42(6):1203–1213

    Article  PubMed  Google Scholar 

  • Müller R, Rüegsegger P (1995) Three-dimensional finite element modelling of non-invasively assessed trabecular bone structures. Med Eng Phys 17(2):126–133

    Article  PubMed  Google Scholar 

  • Nazarian A, Müller R (2004) Time-lapsed microstructural imaging of bone failure behavior. J Biomech 37(1):55–65

    Article  PubMed  Google Scholar 

  • Niebur GL, Yuen JC, Hsia AC et al. (1999) Convergence behavior of high-resolution finite element models of trabecular bone. J Biomech Eng 121(6):629–635

    Article  PubMed  CAS  Google Scholar 

  • Niebur GL, Feldstein MJ, Yuen JC et al. (2000) High-resolution finite element models with tissue strength asymmetry accurately predict failure of trabecular bone. J Biomech 33(12):1575–1583

    Article  PubMed  CAS  Google Scholar 

  • Niebur GL, Feldstein MJ, Keaveny TM (2002) Biaxial failure behavior of bovine tibial trabecular bone. J Biomech Eng 124(6):699–705

    Article  PubMed  Google Scholar 

  • Rho JY, Ashman RB, Turner CH (1993) Young's modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements. J Biomech 26(2):111–119

    Article  PubMed  CAS  Google Scholar 

  • Smith IM, Griffiths DV (1998) Programming the finite element method, 3rd edn. Wiley, New York

    Google Scholar 

  • Stauber M, Huber M, van Lenthe GH et al. (2004) A finite element beam-model for efficient simulation of large-scale porous structures. Comput Methods Biomech Biomed Engin 7(1):9–16

    Article  PubMed  Google Scholar 

  • Strang G (1986) Introduction to applied mathematics. Wellesley-Cambridge, Wellesley, MA

    Google Scholar 

  • Su R, Campbell GM, Boyd SK (2006) Establishment of an architecture-specific experimental validation approach for finite element modeling of bone by rapid prototyping and high resolution computed tomography. Med Eng Phys 29(4):480–490

    Article  PubMed  Google Scholar 

  • Turner CH, Burr DB (1993) Basic biomechanical measurements of bone: a tutorial. Bone 14(4):595–608

    Article  PubMed  CAS  Google Scholar 

  • Ulrich D, van Rietbergen B, Weinans H et al. (1998) Finite element analysis of trabecular bone structure: a comparison of image-based meshing techniques. J Biomech 31(12):1187–1192

    Article  PubMed  CAS  Google Scholar 

  • Van Rietbergen B, Weinans H, Huiskes R et al. (1995) A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models. J Biomech 28(1):69–81

    Article  PubMed  Google Scholar 

  • Van Rietbergen B, Odgaard A, Kabel J et al. (1996) Direct mechanics assessment of elastic symmetries and properties of trabecular bone architecture. J Biomech 29(12):1653–1657

    PubMed  Google Scholar 

  • Van Rietbergen B, Odgaard A, Kabel J et al. (1998) Relationships between bone morphology and bone elastic properties can be accurately quantified using high-resolution computer reconstructions. J Orthop Res 16(1):23–28

    Article  PubMed  Google Scholar 

  • Van Rietbergen B, Majumdar S, Newitt D et al. (2002) High-resolution MRI and micro-FE for the evaluation of changes in bone mechanical properties during longitudinal clinical trials: application to calcaneal bone in postmenopausal women after one year of idoxifene treatment. Clin Biomech (Bristol) 17(2):81–88

    Article  Google Scholar 

  • Van Rietbergen B, Huiskes R, Eckstein F et al. (2003) Trabecular bone tissue strains in the healthy and osteoporotic human femur. J Bone Miner Res 18(10):1781–1788

    Article  PubMed  Google Scholar 

  • Verhulp E, van Rietbergen B, Huiskes R (2004) A three-dimensional digital image correlation technique for strain measurements in microstructures. J Biomech 37(9):1313–1320

    Article  PubMed  CAS  Google Scholar 

  • Whiting WC, Zernicke RF (1998) Biomechanics of musculoskeletal injury. Human Kinetics, Winsor, Canada

    Google Scholar 

  • Zysset PK, Guo XE, Hoffler CE et al. (1999) Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. J Biomech 32(10):1005–1012

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven K. Boyd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Boyd, S.K. (2009). Image-Based Finite Element Analysis. In: Sensen, C.W., Hallgrímsson, B. (eds) Advanced Imaging in Biology and Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68993-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68993-5_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68992-8

  • Online ISBN: 978-3-540-68993-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics