Skip to main content

Abstract

Micro-computed tomography (micro-CT) provides high-resolution three-dimensional (3D) geometry and density information for the analysis of biological materials, and is particularly well-suited for bone research. These detailed 3D data have provided significant insights into issues surrounding bone quality, and the recent advancement of this technology now provides the opportunity to perform these measurements in living subjects, including both experimental animal models and direct patient measurements. This chapter reviews the fundamental principles of micro-CT and caveats related to its use. It describes the current approaches for analyzing these rich 3D datasets, as well as leading-edge developments. These include analysis techniques such as structure classification, image registration, image-guided failure analysis, extrapolation of structure from time series, and high-throughput approaches for morphological analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bolotin HH (2007) DXA in vivo BMD methodology: an erroneous and misleading research and clinical gauge of bone mineral status, bone fragility, and bone remodelling. Bone 41(1):138–154

    Article  PubMed  CAS  Google Scholar 

  • Bonse U, Busch F (1996) X-ray computed microtomography (microCT) using synchrotron radiation (SR). Prog Biophys Mol Biol 65(1–2):133–169

    Article  PubMed  CAS  Google Scholar 

  • Boyd SK, Mattmann C, Kuhn A, Müller R, Gasser JA (2004) A novel approach for monitoring and predicting bone microstructure in osteoporosis. 26th American Society of Bone and Mineral Research Annual Meeting, Seattle, USA, 1—5 Oct 2004. J Bone Miner Res 19(Suppl 1):S236–S237

    Google Scholar 

  • Boyd SK, Davison P, Müller R, Gasser JA (2006a) Monitoring individual morphological changes over time in ovariectomized rats by in vivo micro-computed tomography. Bone 39(4):854–862

    Article  Google Scholar 

  • Boyd SK, Moser S, Kuhn M, Klinck RJ, Krauze PL, Müller R, Gasser JA (2006b) Evaluation of three-dimensional image registration methodologies for in vivo micro-computed tomography. Ann Biomed Eng 34(10):1587–1599

    Article  Google Scholar 

  • Brooks RA, Di Chiro G (1976) Beam hardening in X-ray reconstructive tomography. Phys Med Biol 21(3):390–398

    Article  PubMed  CAS  Google Scholar 

  • Brouwers JE, van Rietbergen B, Huiskes R (2007) No effects of in vivo micro-CT radiation on structural parameters and bone marrow cells in proximal tibia of wistar rats detected after eight weekly scans. J Orthop Res 25(10):1325–1332

    Article  PubMed  Google Scholar 

  • Buie HR, Campbell GM, Klinck RJ, MacNeil JA, Boyd SK (2007) Automatic segmentation based on a dual threshold technique for in vivo micro-CT bone analysis. Bone 41:505–515

    Article  PubMed  Google Scholar 

  • Cooper DM, Turinsky AL, Sensen CW, Hallgrimsson B (2003) Quantitative 3D analysis of the canal network in cortical bone by micro-computed tomography. Anat Rec 274B(1):169–179

    Article  Google Scholar 

  • Feldkamp LA, Davis LC, Kress JW (1984) Practical cone-beam algorithm. J Opt Soc Am A1:612–619

    Article  Google Scholar 

  • Feldkamp LA, Goldstein SA, Parfitt AM, Jesion G, Kleerekoper M (1989) The direct examination of three-dimensional bone architecture in vitro by computed tomography. J Bone Miner Res 4(1):3–11

    Article  PubMed  CAS  Google Scholar 

  • Fitzpatrick JM, Hill DLG, Maurer CR (2000) Chapter 8: image registration. In: Sonka M, Fitz-patrick JM (eds) Handbook of medical imaging, vol. 2: medical image processing and analysis. SPIE Press, Bellingham, WA, pp 447–513

    Google Scholar 

  • Guldberg RE, Ballock RT, Boyan BD, Duvall CL, Lin AS, Nagaraja S, Oest M, Phillips J, Porter BD, Robertson G, Taylor WR (2003) Analyzing bone, blood vessels, and biomaterials with microcomputed tomography. IEEE Eng Med Biol Mag 22(5):77–83

    Article  PubMed  CAS  Google Scholar 

  • Harrigan TP, Mann RW (1984) Characterization of microstructural anisotropy in orthotropic materials using a second rank tensor. J Mater Sci 19:761–767

    Article  CAS  Google Scholar 

  • Hildebrand T, Rüegsegger P (1997a) A new method for the model-independent assessment of thickness in three-dimensional images. J Microsc 185(1):67–75

    Article  Google Scholar 

  • Hildebrand T, Rüegsegger P (1997b) Quantification of bone microarchitecture with the structure model index. Comput Method Biomech Biomed Eng 1:15–23

    Article  Google Scholar 

  • Holdsworth DW, Drangova M, Fenster A (1993) A high-resolution XRII-based quantitative volume CT scanner. Med Phys 20(2 Pt 1):449–462

    Article  PubMed  CAS  Google Scholar 

  • Hulme PA, Ferguson SJ, Boyd SK (2008) Determination of vertebral endplate deformation under load using micro-computed tomography. J Biomech 41(1):78–85

    Article  PubMed  CAS  Google Scholar 

  • Klinck RJ, Campbell GM, Boyd SK (2008) Radiation effects on bone structure in mice and rats during in-vivo micro-CT scanning. Med Eng Phys 30(7):888–895

    Article  PubMed  Google Scholar 

  • Kohler T, Stauber M, Donahue LR, Muller R (2007) Automated compartmental analysis for high-throughput skeletal phenotyping in femora of genetic mouse models. Bone 41(4):659–667

    Article  PubMed  Google Scholar 

  • Kristensen E, Parsons TE, Gire J, Hallgrímsson B, Boyd SK (2008) A novel high-throughput morphological method for phenotypic analysis. IEEE Trans Biomed Eng (submitted for publication)

    Google Scholar 

  • Laib A, Ruegsegger P (1999) Comparison of structure extraction methods for in vivo trabecular bone measurements. Comput Med Imaging Graph 23(2):69–74

    Article  PubMed  CAS  Google Scholar 

  • Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. Comput Graphics 21(4):163–169

    Article  Google Scholar 

  • MacNeil JA, Boyd SK (2007) Accuracy of high-resolution peripheral quantitative computed tomography for measurement of bone quality. Med Eng Phys 29(10):1096–1105

    Article  PubMed  Google Scholar 

  • MacNeil JA, Boyd SK (2008) Improved reproducibility of high-resolution peripheral quantitative computed tomography for measurement of bone quality. Med Eng Phys 30(6):792–799

    Article  PubMed  Google Scholar 

  • Nazarian A, Müller R (2004) Time-lapsed microstructural imaging of bone failure behavior. J Biomech 37(1):55–65

    Article  PubMed  Google Scholar 

  • Odgaard A (1997) Three-dimensional methods for quantification of cancellous bone architecture. Bone 20(4):315–328

    Article  PubMed  CAS  Google Scholar 

  • Odgaard A, Gundersen HJ (1993) Quantification of connectivity in cancellous bone, with special emphasis on 3-D reconstructions. Bone 14(2):173–182

    Article  PubMed  CAS  Google Scholar 

  • Parfitt AM, Mathews CH, Villanueva AR, Kleerekoper M, Frame B, Rao DS (1983) Relationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis. Implications for the microanatomic and cellular mechanisms of bone loss. J Clin Invest 72(4):1396–1409

    Article  PubMed  CAS  Google Scholar 

  • Parsons TE, Kristensen E, Hornung L, Diewert VM, Boyd SK, German RZ, Hallgrímsson B (2008) Phenotypic variability and craniofacial dysmorphology: increased shape variance in a mouse model for cleft lip. J Anat 212(2):135–143

    Article  PubMed  Google Scholar 

  • Pauchard Y, Boyd SK (2008) Landmark based compensation of patient motion artifacts in computed tomography. SPIE Medical Imaging, San Diego, CA, 16–21 Feb. 2008

    Google Scholar 

  • Peyrin F, Salome M, Cloetens P, Laval-Jeantet AM, Ritman E, Rüegsegger P (1998) Micro-CT examinations of trabecular bone samples at different resolutions: 14, 7 and 2 micron level. Technol Health Care 6(5–6):391–401

    PubMed  CAS  Google Scholar 

  • Rüegsegger P, Koller B, Müller R (1996) A microtomographic system for the nondestructive evaluation of bone architecture. Calcif Tissue Int 58(1):24–29

    Article  PubMed  Google Scholar 

  • Schneider P, Stauber M, Voide R, Stampanoni M, Donahue LR, Müller R (2007) Ultrastructural properties in cortical bone vary greatly in two inbred strains of mice as assessed by synchrotron light based micro- and nano-CT. J Bone Miner Res 22(10):1557–1570

    Article  PubMed  Google Scholar 

  • Stauber M, Müller R (2006) Volumetric spatial decomposition of trabecular bone into rods and plates—a new method for local bone morphometry. Bone 38(4):475–484

    Article  PubMed  Google Scholar 

  • Van Rietbergen B, Odgaard A, Kabel J, Huiskes R (1998) Relationships between bone morphology and bone elastic properties can be accurately quantified using high-resolution computer reconstructions. J Orthop Res 16(1):23–28

    Article  PubMed  Google Scholar 

  • Voide R, van Lenthe GH, Schneider P, Wyss P, Sennhauser U, Stampanoni M, Stauber M, Müller R (2006) Bone microcrack initiation and propagation—towards nano-tomographic imaging using synchrotron light. (5th World Congress of Biomechanics, Munich, Germany. July 29—August 4, 2006.) J Biomech 39(Suppl 1):S16

    Google Scholar 

  • Waarsing JH, Day JS, Weinans H (2004) An improved segmentation method for in vivo microct imaging. J Bone Miner Res 19(10):1640–1650

    Article  PubMed  Google Scholar 

  • Wehrli FW, Gomberg BR, Saha PK, Song HK, Hwang SN, Snyder PJ (2001) Digital topologi-cal analysis of in vivo magnetic resonance microimages of trabecular bone reveals structural implications of osteoporosis. J Bone Miner Res 16(8):1520–1531

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Boyd, S.K. (2009). Micro-Computed Tomography. In: Sensen, C.W., Hallgrímsson, B. (eds) Advanced Imaging in Biology and Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68993-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68993-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68992-8

  • Online ISBN: 978-3-540-68993-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics