Skip to main content

Contrast-Enhanced Micro-CT Imaging of Soft Tissues

  • Chapter

Abstract

Analyzing the three-dimensional (3D) structure of specimens has become increasingly important in biomedical research fields, and microcomputed tomography (micro-CT) has emerged as an effective method for rapidly and non-destructively quantifying the geometry and morphology of tissues. Though micro-CT was originally designed to assess cortical and trabecular bone microarchitecture, applications for micro-CT now extend to the imaging of soft tissues. In particular, vascular anatomy and articular cartilage degradation are of major interest to investigators in the orthopedic research areas. This chapter outlines processes and results involved in utilizing X-ray contrast agents to enhance micro-CT analyses of vasculature and articular cartilage.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe M, Sata M, Nishimatsu H, Nagata D, Suzuki E, Terauchi Y, Kadawaki T, Minamino N, Kangawa K, Matsuo H, Hirata Y, Nagai R (2003) Adrenomedullin augments collateral development in response to acute ischemia. Biochem Biophys Res Commun 306:10–15

    Article  PubMed  CAS  Google Scholar 

  • Amano K, Matsubara H, Iba O, Okigaki M, Fujiyama S, Imada T, Kojima H, Nozawa Y, Kawashima S, Yokoyama M, Iwasaka T (2003) Enhancement of ischemia-induced angio-genesis by eNOS overexpression. Hypertension 41(1):156–162

    Article  PubMed  CAS  Google Scholar 

  • Bashir A, Gray ML, Burstein D (1996) Gd-DTPA2-as a measure of cartilage degradation. Magn Reson Med 36(5):665–673

    Article  PubMed  CAS  Google Scholar 

  • Bashir A, Gray ML, Boutin RD, Burstein D (1997) Glycosaminoglycan in articular cartilage: in vivo assessment with delayed Gd(DTPA)(2-)-enhanced MR imaging. Radiology 205(2):551–558

    PubMed  CAS  Google Scholar 

  • Bashir A, Gray ML, Hartke J, Burstein D (1999) Nondestructive imaging of human cartilage glycosaminoglycan concentration by MRI. Magn Reson Med 41(5):857–865

    Article  PubMed  CAS  Google Scholar 

  • Bentley MD, Ortiz MC, Ritman EL, Romero JC (2002) The use of microcomputed tomography to study microvasculature in small rodents. Am J Physiol Regul Integr Comp Physiol 282(5): R1267–R1279

    PubMed  CAS  Google Scholar 

  • Bonnarens F, Einhorn TA (1984) Production of a standard closed fracture in laboratory animal bone. J Orthop Res 2(1):97–101

    Article  PubMed  CAS  Google Scholar 

  • Brevetti LS, Paek R, Brady SE, Hoffman JI, Sarkar R, Messina LM (2001) Exercise-induced hyperemia unmasks regional blood flow deficit in experimental hindlimb ischemia. J Surg Res 98(1):21–26

    Article  PubMed  CAS  Google Scholar 

  • Brey EM, King TW, Johnston C, McIntire LV, Reece GP, Patrick CW Jr (2002) A technique for quantitative three-dimensional analysis of microvascular structure. Microvasc Res 63(3):279–294

    Article  PubMed  Google Scholar 

  • Couffinhal T, Silver M, Zheng LP, Kearney M, Witzenbichler B, Isner JM (1998) Mouse model of angiogenesis. Am J Pathol 152(6):1667–1679

    PubMed  CAS  Google Scholar 

  • Deveci D, Egginton S (1999) Development of the fluorescent microsphere technique for quantifying regional blood flow in small mammals. Exp Physiol 84:615–630

    Article  PubMed  CAS  Google Scholar 

  • Duvall CL, Taylor WR, Weiss D, Guldberg RE (2004) Quantitative microcomputed tomography analysis of collateral vessel development after ischemic injury. Am J Physiol Heart Circ Physiol 287(1): H302–H310

    Article  PubMed  CAS  Google Scholar 

  • Faure P, Doan BT, Beloeil JC (2003) In-vivo high resolution three-dimensional MRI studies of rat joints at 7 T. NMR Biomed 16(8):484–493

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Sanz A, Rodriguez-Barbero A, Bentley MD, Ritman EL, Romero JC (1998) Three-dimensional microcomputed tomography of renal vasculature in rats. Hypertension 31(1 Pt 2):440–444

    PubMed  CAS  Google Scholar 

  • Hildebrand T, Ruegsegger P (1997) A new method for the model-independent assessment of thickness in three-dimensional images. J Microsc 185:67–75

    Article  Google Scholar 

  • Hildebrand T, Laib A, Muller R, Dequeker J, Ruegsegger P (1999) Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus. J Bone Miner Res 14(7):1167–1174

    Article  PubMed  CAS  Google Scholar 

  • Holdsworth DW, Thornton MM (2002) Micro-CT in small animal and specimen imaging. Trends Biotechnol 20:S34–S39

    Article  Google Scholar 

  • Jorgensen SM, Demirkaya O, Ritman EL (1998) Three-dimensional imaging of vasculature and parenchyma in intact rodent organs with X-ray micro-CT. Am J Physiol 275(3 Pt 2):H1103–H114

    PubMed  CAS  Google Scholar 

  • Kim YJ, Jaramillo D, Millis MB, Gray ML, Burstein D (2003) Assessment of early osteoarthri-tis in hip dysplasia with delayed gadolinium-enhanced magnetic resonance imaging of cartilage. J Bone Joint Surg Am 85A(10):1987–1992

    Google Scholar 

  • Kowallik P, Schulz R, Guth BD, Schade A, Paffhausen W, Gross R, Heusch G (1991) Measurement of regional myocardial blood flow with multiple colored microspheres. Circulation 83(3):974–982

    PubMed  CAS  Google Scholar 

  • Kurkijarvi JE, Nissi MJ, Kiviranta I, Jurvelin JS, Nieminen MT (2004) Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and T2 characteristics of human knee articular cartilage: topographical variation and relationships to mechanical properties. Magn Reson Med 52(1):41–46

    Article  PubMed  CAS  Google Scholar 

  • Maehara N (2003) Experimental microcomputed tomography study of the 3D microangioar-chitecture of tumors. Eur Radiol 13(7):1559–1565

    Article  PubMed  Google Scholar 

  • Mallat Z, Silvestre JS, Le Ricousse-Roussanne S, Lecomte-Raclet L, Corbaz A, Clergue M, Duriez M, Barateau V, Akira S, Tedgui A, Tobelem G, Chvatchko Y, Levy BI (2002) Interleukin-18/interleukin-18 binding protein signaling modulates ischemia-induced neo-vascularization in mice hindlimb. Circ Res 91(5):441–448

    Article  PubMed  CAS  Google Scholar 

  • Mow VC, Ratcliffe A (1997) Structure and function of articular cartilage and meniscus. In: Mow VC, Hayes WC (eds) Basic orthopaedic biomechanics. Lippincott-Raven, Philadelphia, pp 113–177

    Google Scholar 

  • Nieminen MT, Rieppo J, Silvennoinen J, Toyras J, Hakumaki JM, Hyttinen MM, Helminen HJ, Jurvelin JS (2002) Spatial assessment of articular cartilage proteoglycans with Gd-DTPA-enhanced Tl imaging. Magn Reson Med 48(4):640–648

    Article  PubMed  CAS  Google Scholar 

  • Nieminen MT, Menezes NM, Williams A, Burstein D (2004) T2 of articular cartilage in the presence of Gd-DTPA2. Magn Reson Med 51(6):1147–1152

    Article  PubMed  Google Scholar 

  • Odgaard A, Gundersen HJ (1993) Quantification of connectivity in cancellous bone, with special emphasis on 3-D reconstructions. Bone 14:173–182

    Article  PubMed  CAS  Google Scholar 

  • Ortiz MC, Garcia-Sanz A, Bentley MD, Fortepiani LA, Garcia-Estan J, Ritman EL, Romero JC, Juncos LA (2000) Microcomputed tomography of kidneys following chronic bile duct ligation. Kidney Int 58(4):1632–1640

    Article  PubMed  CAS  Google Scholar 

  • Palmer AW, Guldberg RE, Levenston ME (2006) Analysis of cartilage matrix fixed charge density and three-dimensional morphology via contrast-enhanced microcomputed tomography. Proc Natl Acad Sci USA 103(51):19255–19260

    Article  PubMed  CAS  Google Scholar 

  • Prinzen FW, Glenny RW (1994) Developments in non-radioactive microsphere techniques for blood flow measurement. Cardiovasc Res 28(10):1467–1475

    Article  PubMed  CAS  Google Scholar 

  • Rai B, Oest ME, Dupont KM, Ho KH, Teoh SH, Guldberg RE (2005) Quantitative micro-computed tomography analysis of angiogenesis and osteogenesis in platelet-rich plasma loaded three-dimensional polycaprolactone-tricalcium phosphate composites implanted in rat nonunion femoral defects. Tissue Engineering Society International Conference and Exposition, Shanghai, China

    Google Scholar 

  • Rodriguez-Porcel M, Lerman A, Ritman EL, Wilson SH, Best PJ, Lerman LO (2000) Altered myocardial microvascular 3D architecture in experimental hypercholesterolemia. Circulation 102(17):2028–2030

    PubMed  CAS  Google Scholar 

  • Samosky JT, Burstein D, Eric Grimson W, Howe R, Martin S, Gray ML (2005) Spatially-localized correlation of dGEMRIC-measured GAG distribution and mechanical stiffness in the human tibial plateau. J Orthop Res 23(1):93–101

    Article  PubMed  CAS  Google Scholar 

  • Scholz D, Ziegelhoeffer T, Helisch A, Wagner S, Friedrich C, Podzuweit T, Schaper W (2002) Contribution of arteriogenesis and angiogenesis to postocclusive hindlimb perfusion in mice. J Mol Cell Cardiol 34(7):775–787

    Article  PubMed  CAS  Google Scholar 

  • Silvestre JS, Tamarat R, Senbonmatsu T, Icchiki T, Ebrahimian T, Iglarz M, Besnard S, Duriez M, Inagami T, Levy BI (2002) Antiangiogenic effect of angiotensin II type 2 receptor in ischemia-induced angiogenesis in mice hindlimb. Circ Res 90(10):1072–1079

    Article  PubMed  CAS  Google Scholar 

  • Silvestre JS, Tamarat R, Ebrahimian TG, Le-Roux A, Clergue M, Emmanuel F, Duriez M, Schwartz B, Branellec D, Levy BI (2003) Vascular endothelial growth factor-B promotes in vivo angiogenesis. Circ Res 93(2):114–123

    Article  PubMed  CAS  Google Scholar 

  • Simopoulous DN, Gibbons SJ, Malysz J, Szurszewski JH, Farrugia G, Ritman EL, Moreland RB, Nehra A (2001) Corporeal structural and vascular micro architecture with X-ray micro computerized tomography in normal and diabetic rabbits: histopathological correlation. J Urol 165:1776–1782

    Article  Google Scholar 

  • Tiderius CJ, Olsson LE, de Verdier H, Leander P, Ekberg O, Dahlberg L (2001) Gd-DTPA2-enhanced MRI of femoral knee cartilage: a dose-response study in healthy volunteers. Magn Reson Med 46(6):1067–1071

    Article  PubMed  CAS  Google Scholar 

  • Tiderius CJ, Olsson LE, Leander P, Ekberg O, Dahlberg L (2003) Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) in early knee osteoarthritis. Magn Reson Med 49(3):488–492

    Article  PubMed  Google Scholar 

  • Van Oosterhout MF, Willigers HM, Reneman RS, Prinzen FW (1995) Fluorescent micro-spheres to measure organ perfusion: validation of a simplified sample processing technique. Am J Physiol 269(2 Pt 2): H725–H733

    PubMed  Google Scholar 

  • Watrin A, Ruaud JP, Olivier PT, Guingamp NC, Gonord PD, Netter PA, Blum AG, Guillot GM, Gillet PM, Loeuille DH (2001) T2 mapping of rat patellar cartilage. Radiology 219(2):395–402

    PubMed  CAS  Google Scholar 

  • Williams A, Gillis A, McKenzie C, Po B, Sharma L, Micheli L, McKeon B, Burstein D (2004) Glycosaminoglycan distribution in cartilage as determinedby delayed gadolinium-enhanced MRI of cartilage (dGEMRIC): potential clinical applications. Am J Roentgenol 182(1):167–172

    Google Scholar 

  • Williams A, Sharma L, McKenzie CA, Prasad PV, Burstein D (2005) Delayed gadolinium-enhanced magnetic resonance imaging of cartilage in knee osteoarthritis: findings at different radiographic stages of disease and relationship to malalignment. Arthritis Rheum 52(11):3528–3535

    Article  PubMed  CAS  Google Scholar 

  • Wilson SH, Herrmann J, Lerman LO, Holmes DR Jr, Napoli C, Ritman EL, Lerman A (2002) Simvastatin preserves the structure of coronary adventitial vasa vasorum in experimental hypercholesterolemia independent of lipid lowering. Circulation 105(4):415–418

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela S.P. Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lin, A.S. et al. (2007). Contrast-Enhanced Micro-CT Imaging of Soft Tissues. In: Qin, L., Genant, H.K., Griffith, J.F., Leung, K.S. (eds) Advanced Bioimaging Technologies in Assessment of the Quality of Bone and Scaffold Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45456-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45456-4_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45454-0

  • Online ISBN: 978-3-540-45456-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics