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Abstract. We proposed unified hardware architecture for the two 128-bit block
ciphers AES and Camellia, and evaluated its performance using a 0.13-µm
CMOS standard cell library. S-Boxes are the biggest hardware components in
block ciphers, and some times they consume more than half of the design area.
The S-Boxes in AES and Camellia are the combination of affine transforma-
tions and multiplicative inversions on a Galois fields. The size of the fields is
same, but their structures are different. Therefore we converted the basis be-
tween the fields by using isomorphism transformations, and shared the inverter
between AES and Camellia. The affine transformations were also merged by
factoring common terms. In addition to the S-Box sharing, many other compo-
nents such as permutation layers and key whiting are also merged. As a result, a
compact hardware of 14.9K gates with throughputs of 469 Mbps for AES and of
661 Mbps for Camellia was achieved. The hardware synthesized with speed op-
timization obtained throughputs of 794 Mbps and 1.12 Gbps for each algorithm
with 24.4K gates.

1   Introduction

The AES (Advanced Encryption Standard) project [1] for the new US federal standard
block cipher algorithm replacing DES (Data Encryption Standard) [2] was started in
1997, and Rijndael [3] was standardized as FIPS PUB 197 [4] in 2001. After then,
many block ciphers that have the AES compatible interface, supporting a 128-bit data
block and 128/192/256-bit keys, have been proposed for other organizations [5-9].
Camellia [9, 10] was developed by NTT (Nippon Telegraph and Telephone Corp.) and
Mitsubishi Electric is the one of them. In February 2003, the NESSIE (New European
Schemes for Signatures, Integrity and Encryption) project [6] chose it as a recom-
mended algorithm and decided to input it to ISO and IETF.

Camellia has good performance in both software and hardware implementations,
and a promising alternative of AES. However, supporting multiple algorithms simply
multiplies the hardware costs, while it is not a big issue in software implementation.
The algorithm structures of AES and Camellia are completely different; the former
uses SPN (Substitution Permutation Network) and the latter does a Feistel network.
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However, they use very similar basic components, such as multiplicative inversion
on Galois field GF(28) and affine transformation on GF(2). Therefore, it is possible to
reduce hardware cost by reusing these common components between two algorithms.

In this paper, we first propose an unified S-Box architecture sharing a GF inverter
and merging affine transformations between AES and Camellia, and factoring tech-
niques for the permutation layers are also shown. Then entire data path architecture
including a key scheduler is described. Finally ASIC hardware performance in size
and speed of the proposed architecture is compared with the discrete implementations
of the two algorithms.

2 S-Box Structures

2.1   AES S-Box

The AES S-Boxes are combinations of a multiplicative inversion on GF(28) and affine
transformations. The irreducible polynomial of Equation (1) is used to define the field.

1)( 348 ++++= xxxxxm (1)

Following the inversion, an affine transformation A defined by Equation (2) is exe-
cuted in the S-Box for encryption. In the equation, an operator ⊕  means XOR (Ex-
clusive-OR). In the decryption S-Box, the multiplicative inversion follows the inverse
affine transformation A–1 defined by Equation (3) that is not shown in the AES speci-
fication [4].
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A 128-bit nonlinear function that contains 16 encryption S-Boxes is called Sub-
Bytes, and that contains 16 decryption S-Boxes is called InvSubBytes. Example hard-
ware implementations of each S-Box is shown in Fig. 1. An XOR operation with ‘1’ in
Equations (2) and (3) equals to a NOT operation. XOR followed by NOT and XOR
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following NOT can be replaced by XNORs (Exclusive NORs). Circuit cost (transistor
counts and operation delay) is basically same between XOR and XNOR gates, so
hardware performance can be improved by using XNOR instead of XOR with NOT.
However the circuits shown in Fig. 1 do not use XNOR and are straightforward im-
plementations of Equations (2) and (3), because they are much suitable for examples.
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Fig. 1.  Straightforward hardware Implementation of AES S-Boxes

2.2   Camellia S-Box

S-Boxes of Camellia use multiplicative inversion on a Galois field and affine trans-
formations in similar fashion of AES. The Camellia description [9, 10] only shows a
truth table of the inversion, but its field structure is not clearly described. So we inves-
tigated a lot of fields, and found that the field extended by using irreducible polynomi-
als in Equation (4) satisfies the truth table.
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Two sets of four S-Boxes (S1~S4) are used every iteration round. In the S-Box S1,
affine transformations F and H defined by Equations (5) and (6) are executed before
and after the multiplicative inversion respectively.
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The S-Boxes S2 and S3 are defined as S1 followed by 1-bit right rotation
(b7, b0, b1, b2, b3, b4, b5, b6) and 1-bit left rotation (b1, b2, b3, b4, b5, b6, b7, b0) respectively.
The input bits of S1 are rotated as (a0, a1, a2, a3, a4, a5, a6, a7) for the S-Box S4. Fig. 2
shows an example circuit of the Camellia S-Boxes. Also here, it is possible to combine
XOR with NOT into XNOR.
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Fig. 2.  Camellia S-Boxes

3 Unified S-Box

3.1 Construct Unified S-Box

In this section, we propose the shared S-Box architecture where a multiplicative
inverter is reused and affine transformations are merged between SubBytes, InvSub-
Bytes and S1~S4. Fig. 3 shows the process of S-Box sharing. The right arrows in the
figure are all 8-bit data buses. In Fig. 3 (1), two S-Boxes SubBytes and InvSubBytes
are independently implemented, and have the same GF(28) inverter. In (2), the inverter
is shared between the S-Boxes by switching affine transformations A and A-1 using 2:1
selectors. We also want to share the inverter with Camellia, but AES and Camellia use
different Galois field for their S-Boxes. However, all fields who have same size are
isomorphic, so we map all elements on the AES’s field to the Camellia’s composite
field, and use the GF((24)2) inverter for all S-Boxes. It is possible to use the AES’s
GF(28) inverter in the Camellia S-Boxes, but the GF(28) inverter generated from a
look-up table is much bigger than the GF((24)2) inverter where sub-field arithmetic for
compact implementation can be applied. The structure of the GF((24)2) inverter is
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detailed in Fig. 4, where the width of all data buses is 4 bits. The box [x-1] shows a
GF(24) inverter, and is designed as SOP (Sum of Products) logic in our implementa-
tions.
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δ and δ -1 in Equations (7) and (8) are isomorphism functions from GF(28) to
GF((24)2) and from GF((24)2) to GF(28) respectively. The functions are defined as 8×8
XOR matrices as same as the affine transformations used in the S-Boxes. In Fig. 3(3),
the isomorphism functions δ and δ -1 placed before and after the GF((24)2) inverter
expand the critical path. In order to shorten the path, the isomorphism functions δ and
δ -1 are combined with affine transformations A and A-1 in Fig. 3(4). The combined
functions A-1×δ and δ -1×A defined by Equations (9) and (10) require 43 2-input XOR
gates, while 48 gates are used for A and A-1. Therefore, circuit size is slightly reduced.

By comparing the matrices between Equations (7) and (9), and between (8) and
(10), many common terms (1s in same columns) can be found. Therefore, hardware
size can be reduced by sharing XOR gates corresponding to these common terms.
However, the half of input bits of Equation (9), (a1, a2, a6, a7), are XORed with ‘1’, and
thus these values are reversed before the matrix operation. Therefore the common
terms for these bits cannot be shared between Equations (7) and (9). In order to share
these bits, replace these reverse operations on the input bits with those on the output
bits as shown in Equation (11). This is possible because these matrix operations are all
linear functions. The AES S-Box circuit after merging the matrices becomes Fig. 3(5).
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Finally, we also merged the Camellia affine transformations F and H according to
the same manner, and obtained the shared S-Box shown in Fig. 3(6). Before merging
F defined by Equation (5), here we also transform it to Equation (12). In the Camellia
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S-Boxes S1~S3, only the order of the output bits is different. Therefore, the circuit
shown in Fig. 3(6) can be used for all of them by only twisting the output wires. On
the other hand, the input bits are twisted in the S4 S-Box. Therefore, we use the affine
transformation F ’ defined by Equation (13) instead of F, where the columns of the
matrix is rotated to the right by one bit
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3.2 Hardware Performance of Unified S-Boxes

In this section, hardware performance of the unified S-Box is compared with the AES
and Camellia S-Boxes that are independently implemented.

Table 1 shows the number of XOR gates required for each matrix operation de-
scribed in the previous section. Common terms are not shared between the matrices
for the numbers in “original matrices”, and are shared for the number in “sharing
common terms.” While the original matrices require 102 XOR gates in total, the num-
ber is reduced by more than 40% for the shared S-Boxes (60 XORs or 56 XORs).

The S-Box performances in size and speed are shown in Table 2, where a 0.13-µm
CMOS standard cell library is used. One gate is equivalent to 2-input NAND gate, and
the speed is estimated under the worst case conditions. The GF((24)2) inverter shown in
the Fig. 4 is used in all S-Boxes. Two discrete S-Boxes (SubBytes and InvSubBytes)
shown in Fig. 3(1), and one unified S-Box (SubBytes + InvSubBytes) in Fig 3(5) are
implemented for AES. The performances between four Camellia S-Boxes are all
same, and those between three shared S-Boxes (AES+S1~S3) are also same. When
number of merged S-Boxes is increased (SubBytes with InvSubBytes, then with
S1~S4), critical path becomes longer, because number of selectors is increased. The
shared S-Box uses 411~414 gates that is almost half of 816 (=280+280+256) gates
required for discrete implementation of two AES S-Boxes and one Camellia S-Box. In
the actual use, a 3:1 selector is additionally needed for discrete implementation to
switch three S-Boxes.



Unified Hardware Architecture for 128-Bit Block Ciphers AES and Camellia         311

Table 1.  Numbers of XOR gates required for each matrix operation

Original matrices
Sharing common

terms

δ δ  –1 A–1×δ δ –1×Α F H Total
AES+
S1~S3

AES+
S4

20 21 22 21 9 9 102 60 56

Table 2.  ASIC Performance of each S-Box circuit

S-Box type Gate counts Delay (ns)

SubBytes 280 3.65
InvSubBytes 280 3.56AES

Merged 349 3.99
Camellia S1~S4 256 3.45

AES + S1~S3 411 4.29
AES+Canellia

AES + S4 414 4.65
           (0.13-µm CMOS, 1gate = 2-input NAND, worst condition)

4 Unified Permutation Layer

AES uses permutation layers MixColumns and InvMixColumns in encryption and
decryption respectively. MixColumns and InvMixColumns are inverse functions each
other, and each function is defined as four 4-byte (4×4×8 bits = 128 bits) matrix op-
erations. On the other hand, Camellia has only one permutation layer called P-function
that is single 8-byte (8×8 bits = 64 bits) matrix operation. In order to merge these
functions, compose two 8-byte matrices by gathering two 4-byte MixColumns and two
4-byte InvMixColimns respectively, and factorize them into a few 8-byte matrices as
shown in Equations (14) and (15). Multiplications with the constant valued {8, 4, 3, 2,
1} in the matrices are defined over modulo m(x) of Equation (1). By comparing Equa-
tions (14) for MixColumns and (15) for InvMixColumns, it is found that MixColumns
is completely included in InvMixColumns [11]. Equation (16) is the matrix represen-
tation of P-function whose elements are ‘0’ and ‘1’, and thus modular arithmetic is not
required. By breaking P-function into two matrices, many common terms with Mix-
Columns are found. After the factorization and common term sharing, the permutation
functions are represented as Equations (17)~(20). The basic structure of shared per-
mutation circuit is shown in Fig. 5.

{02,01,00}
-element
Matrices

{08,04,00}
-element
Matrices

InvMixColumns MixColumns

x

y z

{01,00}
-element
Matrices

{01,00}
-element
Matrices

w
P-function

Fig. 5. Unified permutation circuit
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Table 3 indicates the hardware size and number of stages of critical path in XOR
gates for the permutation functions. The total size of our unified permutation circuit
are only 476 XORs, while the original functions require 1,482 XORs. Therefore, the
hardware cost is reduced down to less than 1/3 with only additional 2 XOR-gate delay.

Table 3.  Performance of permutation functions

Original matrices
2 Mix-

Columns
2 InvMix-
Columns

P-func Total

Sharing
common

terms
XORs 304 880 288 1,482 476

Delay (gates) 3 5 3 5 7

5 Unified Data Path Architecture

Fig. 6 shows the unified data path architecture of the data randomization block. In
addition to sharing S-Boxes and permutation, FL/FL-1 and key whitening functions are
also merged. Only 128-bit key is supported in the current design, but 192- and 256-bit
keys can be easily supported by modifying the key scheduler shown in Fig. 7. Many
components are shared in the data randomization block, but only registers can be re-
used in the key scheduler, because the key scheduling methods of two algorithms are
much different.

128 bits are processed in one clock cycle by FL/FL-1 and key whitening in Camellia
and the first AddRoundKey (using key whitening path) in AES. The other function
blocks handle a 64 bits at one time. A straightforward implementation of AES that has
128-bit data path takes 11 cycles for the one block encryption or decryption. But the
unified hardware of Fig. 6 processes 64 bits / cycle for the 2~11 rounds, and thus, it
takes 20 cycles for these rounds. The key scheduler reusing the S-Boxes in the main
data path requires additional 10 cycles. Therefore, our unified hardware takes
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1+20+10=31 cycles for AES. If four 8-bit S-Boxes dedicated for the key scheduling
are attached, the number of cycle is reduced to 21. On the other hand, Camellia takes 2
cycles for FL/FL-1, 2 cycles for key whitening, and 18 cycles for the Feistel rounds (F
function), therefore 22 cycles in total.
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6 ASIC Performance Comparison

Table 4 shows the performance comparison between our unified hardware and inde-
pendent implementations of the two algorithms [11, 12], where same 0.13-µm CMOS
standard cell library is used for all. Two circuits were generated from each design
source by indicating area and speed optimizations to a synthesis tool. The number of
S-Boxes are eight (64 bits) in all designs.

In comparison with the AES hardware of the reference [11], the number of cycles
of the unified hardware is one cycle fewer. As mentioned before, this is because a
128-bit block is processed at once in the first AddRoundKey while it is executed by 64
bits and takes two cycles in [11]. On the other hand, the Camellia operation takes 22
cycles in the unified hardware, while it is 18 cycles in [12]. Because the Camellia
hardware in [12] executes the FL/FL-1 functions or the key whitening, and the F func-
tion in a same cycle. This approach is suitable for high-speed implementation, but
requires additional hardware. Therefore we did not use it for the unified hardware
whose priority is compactness. The maximum operation frequency of the unified
hardware is lower than that of references [11, 12]. This is because the critical path
became longer due to the additional hardware such as selectors to merge two data
paths of different algorithms.

Discreet implementations require 21.6K (=8.0K+13.6K) gates for compact versions
of two algorithms and 34.6K (=14.8K+19.8K) gates for high-speed versions. On the
other hand, our unified hardware is 30% smaller, 14.9K gates and 24.4K gates respec-
tively. The throughputs of the unified hardware are 9~14% lower for AES and
31~40% lower for Camellia. Therefore, the proposed architecture is much suitable for
the application such as embedded use where hardware resource is more critical than
speed.

Table 4. Hardware performance comparison

Algorithms Cycles
Gate

counts

Max.
frequency

(MHz)

Throughput
(Mbps)

Synthesis
optimization

AES
Camellia

31
22

14,918 113.64
   469.22
   661.18

Area
This work

AES
Camellia

31
22

24,424 192.31
   794.05
1,118.89

Speed

7,998 137.17    548.68 AreaReference
[11]

AES 32
14,777 218.82    875.28 Speed
13,557 153.85 1,094.04 AreaReference

[12]
Camellia 18

19,783 227.27 1,616.14 Speed
                                           (0.13-µm CMOS, 1gate = 2-input NAND, worst condition)
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7 Conclusion

Unified hardware architecture for the 128-bit block ciphers AES and Camellia was
proposed and its performance was evaluated in comparison with non-unified imple-
mentations. To merge the biggest hardware component S-Box between two algo-
rithms, a multiplicative inverter on GF((24)2) was shared by using isomorphism trans-
formation, and factoring technique was applied on affine transformations. The per-
mutation layers were also merged by sharing common terms of the operator matrix.
Our architecture was synthesized by using a 0.13-µm CMOS standard cell library, and
compact implementations of 14.9K~24.4K gates were obtained with throughputs of
469M~794Mbps and 661M~1,119Mbps for AES and Camellia respectively. The gate
counts were 30% smaller than the conventional implementations where two algo-
rithms were discreetly designed.
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Appendix 1   AES Algorithm

Fig. A1 shows an AES encryption process under a 128-bit secret key. 11 sets of round
keys are generated from the secret key, and are fed to each round of the SPN block.
The round operation is combination of four primitive functions, SubBytes (sixteen 8-
bit S-Boxes), ShiftRows (byte boundary rotations), MixColumns (4-byte × 4-byte
matrix operation), and AddRoundKeys (bit-wise XOR). In decryption, the inverse
functions (AddRoundKey is identical) are executed in reverse order

The key scheduler uses four S-Boxes and 4-byte constant values Rcon[i] (i=1~10).
The highest byte of Rcon[i] is the bit representation of the polynomial xi mod m(x),
and the other three bytes are all zeros. In decryption, these sets of keys are used in
reverse order.
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Fig. A1. Encryption process of AES algorithm

Appendix 2 Camellia Algorithm

Fig. A2 shows the encryption process of Camellia for a 128-bit secret key. At the
initial and final stages, 128-bit data is XORed with 128-bit round keys. A 22-round
data randomization part consists of three 6-round Feistel networks, and two FL/FL-1

functions placed between the networks. The 128-bit data input to the Feistel network
is divided into two 64-bit data blocks, and the left half is fed into the F function with a
64-bit round key, and its output is XORed with the right half. The left and right half
are swapped every round. 64-bit data input to the F function is XORed with the 64-bit
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round key. The result is divided into eight 8-bit blocks, and they are fed to eight S-
Boxes (S1~S4) followed by the P-function. Same data path can be used in decryption
by just changing order of round keys.

As shown in Fig. A3, a 128-bit intermediate key KA is generated from the 128-bit
secret key KL by using the F function 4 times. The round keys are generated from KA

and KL by bit rotations.
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