
CAS-Based Lock-Free Algorithm for Shared
Deques

Maged M. Michael

IBM Thomas J. Watson Research Center, Yorktown Heights, New York, USA
magedm@us.ibm.com

Abstract. This paper presents the first lock-free algorithm for shared
double-ended queues (deques) based on the single-address atomic prim-
itives CAS (Compare-and-Swap) or LL/SC (Load-Linked and Store-
Conditional). The algorithm can use single-word primitives, if the max-
imum deque size is static. To allow the deque’s size to be dynamic, the
algorithm employs single-address double-width primitives. Prior lock-
free algorithms for shared deques depend on the strong DCAS (Double-
Compare-and-Swap) atomic primitive, not supported on most processor
architectures. The new algorithm offers significant advantages over prior
lock-free shared deque algorithms with respect to performance and the
strength of required primitives. In turn, lock-free algorithms provide sig-
nificant reliability and performance advantages over lock-based imple-
mentations.

1 Introduction

The double-ended queue (deque) object type [11] supports four operations on
an abstract sequence of items: PushRight, PudhLeft, PopRight and PopLeft.
PushRight (PushLeft) inserts a data item onto the right (left) end. PopRight
(PopLeft) removes and returns the rightmost (leftmost) data item, if any. A
shared object is lock-free [8] if it guarantees that whenever a process executes
some finite number of steps towards an operation on the object, some process
(possibly a different one) must have completed an operation on the object, during
the execution of these steps. Therefore, unlike conventional lock-based objects,
lock-free objects are immune to deadlock even with process (fail stop) failures,
and offer robust performance even with arbitrary process delays.

Prior lock-free algorithms for shared deques [1,4,5] depend on the strong
DCAS (Double-Compare-and-Swap) atomic primitive, which is not supported
on most current processor architectures, and its simulation using weaker widely-
supported primitives such as CAS (Compare-and-Swap)1 or LL/SC (Load-
Linked and Store-Conditional)2 entails significant performance overhead.
1 CAS(addr,exp,new) performs {if (*addr �= exp) return false; *addr←new; return

true;} atomically. DCAS is similar to CAS, but operates on two independent memory
locations.

2 LL(addr) returns *addr. SC(addr,new) performs {if (*addr was written by another
process since the last LL(addr) by the current process) return false; *addr←new;

H. Kosch, L. Böszörményi, H. Hellwagner (Eds.): Euro-Par 2003, LNCS 2790, pp. 651–660, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



652 M.M. Michael

This paper presents the first CAS-based lock-free algorithm for shared de-
ques. The general structure of our implementation is a doubly-linked list, where
each node contains pointers to its right and left neighbors, and includes a data
field. The two ends of the doubly-linked list are pointed to by two anchor point-
ers. The two anchor pointers along with a three-value status tag occupy one
memory block that can be manipulated atomically by CAS or LL/SC. The sta-
tus tag indicates whether the deque is stable or not. When a process finds the
deque in an unstable state, it must first attempt to take it to a stable state
before attempting its own operation. The algorithm can use single-word CAS
or LL/SC, if the maximum size of the deque is static. To allow the deque’s size
to be dynamic, the algorithm uses single-address double-width versions of these
primitives.

// Code in bold type is for memory management.
// Types and structures
define StatusType = { stable,rpush, lpush}
structure NodeType { Right,Left:〈*NodeType, integer〉; Data: DataType; }
define AnchorType = 〈*NodeType,*NodeType,StatusType〉
// Shared variables
Anchor : AnchorType; // initially Anchor = 〈null,null,stable〉

Fig. 1. Types and structures.

2 The Algorithm

2.1 Structures

Figure 1 shows the data structures used by the algorithm. The deque is repre-
sented as a doubly-linked list. Each node in the list contains two link pointers,
Right and Left, and a data field. A shared variable, Anchor, holds the two anchor
pointers to the leftmost and rightmost nodes in the list, if any, and a three-value
status tag. Anchor must fit in a memory block that can be read and manipulated
using CAS or LL/SC, atomically. Initially both anchor pointers have null values
and the status tag holds the value stable, indicating an empty deque.

The status tag serves to indicate if the deque is in an unstable state. When
a process finds the deque in an unstable state, it must first attempt to take it
to a stable state before attempting its own operation.

The algorithm can use single-word CAS or LL/SC. Nodes can be preallocated
in an array, which length can be chosen such that both anchor pointers and the
status tag can fit in a single-word. However, in order to allow the deque to be
completely dynamic, with arbitrary size, we employ single-address double-width
CAS or LL/SC.

return true;} atomically. However, due to practical considerations, processor archi-
tectures that support LL/SC prohibit nesting or interleaving LL/SC pairs, and oc-
casionally but not infinitely often, allow SC to fail spuriously.



CAS-Based Lock-Free Algorithm for Shared Deques 653

2.2 Valid States

Figure 2(a) shows the three stable deque states. A deque is stable only if the
status tag holds the value stable. A deque can be stable only if it is coherent.
That is, for all nodes xˆ in the deque’s list x .̂Right .̂Left= x, unless xˆ is the
rightmost node; and x .̂Left .̂Right= x, unless xˆ is the leftmost node. Empty
and single-item deques are always stable (states S0 and S1, respectively). A
deque is in the S2+ state if it is stable and contains two or more items.

S0

/ /stable

S1

stable

data

?
?

�

�

�

�

S2+

data data data data

?
?

�

�

�

�
� � � �

����

stable

� �
��

(a) Stable states.

Lincoherent

data data data data

?
?

�

�

�

�
� � � �

����

lpush

� �
�×

Rincoherent

data data data data

?
?

�

�

�

�
� � � �

����

rpush

� ×
��

Lcoherent

data data data data

?
?

�

�

�

�
� � � �

����

lpush

� �
��

Rcoherent

data data data data

?
?

�

�

�

�
� � � �

����

rpush

� �
��

(b) Unstable States.

Fig. 2. Valid states.

Figure 2(b) shows the four unstable but valid deque states. A deque can be
unstable only if it contains two or more items. It is acceptable for one end of the
deque to be incoherent, as long as the status tag indicates an unstable deque
on the same end. The list, excluding the end nodes, is always coherent. The
deque is right-incoherent if r .̂Left .̂Right �= r, where rˆ is the rightmost node.
The deque is left-incoherent if l .̂Right .̂Left �= l, where lˆ is the leftmost node.
The deque is in state Rincoherent (Lincoherent) when the deque is righ-incoherent
(left-incoherent), the rest of the list is coherent, and the status tag is rpush
(lpush). At most one end of the deque can be incoherent at a time. Unstable
states result from push operations, but never from pop operations, hence the
naming of the unstable status tag values. It is also acceptable for the status tag
to indicate an unstable deque even when the deque is in fact coherent. Such is
the case for the Rcoherent and Lcoherent states.

2.3 Operations

For clarity, we assume for now perfect memory management. However, due to the
limited available space and the importance of memory management we include



654 M.M. Michael

code (in bold type) related to other memory management methods, that we
discuss only in the following subsection.

PushRight(data:DataType) {
// For simplicity, assume NewNode() always returns a new node.
node←NewNode();
node .̂Data←data;
while true {

1: 〈l,r,s〉←Anchor;
if r = null {

2: if CAS(&Anchor,〈l,r,s〉,〈node,node,s〉) return;
} else if s = stable {

3: node .̂Left←〈r,anyvalue〉;
4: if CAS(&Anchor,〈l,r,s〉,〈l,node,rpush〉)

{StabilizeRight(〈l,node,rpush〉); return;}
} else Stabilize(〈l,r,s〉);

}
}

Fig. 3. PushRight algorithm.

Figure 3 shows the algorithm for the PushRight operation. If the deque is
empty (i.e., in state S0), the operation is completed in one atomic step (line 2)
by setting both anchor pointers to the address of the new node containing the
new item. Otherwise, if the deque is unstable, it must be stabilized first using
the Stabilize routine in Figure 4, before attempting the push operation.

If the deque is stable and contains one or more items (i.e., in states S1 or
S2+), the push operation is completed in multiple steps. The first step (line 4)
is to swing the right anchor pointer to the new node and to indicate a right-
unstable deque in the status tag, atomically, after setting the Left pointer of
the new node to point to the rightmost node in the deque (line 3). After this
step, the deque is unstable and most likely right-incoherent. It is possible for
a successful CAS in line 4 to take a stable deque in state S1 or state S2+ to
state Rcoherent directly, if the Right pointer of the old rightmost node in the
list happens to hold the address of the newly pushed node. The next step of a
PushRight operation is to stabilize the deque by calling StabilizeRight.

If either of the CAS operations in lines 2 and 4 fails, the process restarts the
push attempt by reading a fresh snapshot of Anchor in line 1. Throughout the
algorithm, the state of the deque changes only on the success of CAS operations.

The success of the CAS in line 2 is the linearization point of a RightPush
into an empty deque, and the success of the CAS in line 4 is the linearization
point of a RightPush into a non-empty deque.

The StabilizeRight routine (Figure 4) involves two main stages. The first
stage (lines 5–9) serves to guarantee that the Right pointer of the old rightmost
node (i.e., the left neighbor of the newly pushed node) points to the new node.



CAS-Based Lock-Free Algorithm for Shared Deques 655

At the end of that code segment, either the deque is in state Rcoherent, or it
must have been in that state at some time since the success of the latest push
in line 4 by the current process. The final stage in StabilizeRight is to attempt
to set the status tag to stable in line 10 and take the deque to state S2+.

Stabilize(〈l,r,s〉:AnchorType) {
if s =rpush

StabilizeRight(〈l,r,s〉);
else // s = lpush

StabilizeLeft(〈l,r,s〉);
}

StabilizeRight(〈l,r,s〉:AnchorType) {
// hp0, hp1 and hp2 are private pointers to three of the process’
// hazard pointers.
*hp0← l; // for memory management only.
*hp1← r; // for memory management only.
if Anchor �= 〈l,r,s〉 return; // for memory management only.

5: 〈prev,dontcare〉← r .̂Left;
*hp2←prev; // for memory management only.

6: if Anchor �= 〈l,r,t〉 return;
7: 〈prevnext,t〉←prev .̂Right;

if prevnext �= r {
8: if Anchor �= 〈l,r,s〉 return;
9: if ¬CAS(&prev .̂Right,〈prevnext,t〉,〈r,t+1〉) return;

}
10: CAS(&Anchor,〈l,r,s〉,〈l,r,stable〉);
}

Fig. 4. Stabilize and StabilizeRight routines.

In order to avoid race conditions that may corrupt the object, whenever
a change in the deque is detected, the process ends its stabilization attempt.
The algorithm requires any process that finds the deque in an unstable state to
stabilize it first before attempting its intended operation. Thus, any changes in
Anchor detected in line 6 or line 8 guarantee that some other processes must
have already stabilized the deque.

The order of steps in the algorithm is very delicate, and especially in the
StabilizeRight (and StabilizeLeft) routine. The condition in line 6 guarantees
that the pointer value prev read in line 5 is a valid pointer as it guarantees that
at that time, the deque contained two or more nodes, and that the node rˆ was
part of the deque.

The condition in line 8 is needed to prevent the process from corrupting
the deque if, for instance, between executing lines 6 and 7, some other process
stabilized the deque, popped the node pushed by the original process, and then
completed another PushRight operation taking the deque to state S2+. Without



656 M.M. Michael

the condition in line 8, if the original process resumes execution, it will reach line
9 and its CAS operation will succeed, resulting in the corruption of the deque.
The deque would be corrupted as its status tag becomes stable while its list
is right-incoherent. This is not a valid state. A succession of PopLeft operations
can cause the left anchor pointer to point to a node that is no longer part of the
deque’s list.

PopRight():DataType {
while true {

11: 〈l,r,s〉←Anchor;
if r = null return empty;
if r = l {

12: if CAS(&Anchor,〈l,r,s〉,〈null,null,s〉) break;
} else if s = stable {

*hp0← l; // for memory management only.
*hp1← r; // for memory management only.
if Anchor �= 〈l,r,s〉 continue; // for memory management only.

13: 〈prev,dontcare〉← r .̂Left;
14: if CAS(&Anchor,〈l,r,s〉,〈l,prev,s〉) break;

} else Stabilize(〈l,r,s〉);
}
data← r .̂Data;
RetireNode(r); // definition depends on memory management method
return data;

} Fig. 5. PopRight algorithm.

Figure 5 shows the PopRight algorithm. If the deque is empty (i.e., in state
S0) a value empty is returned. Pop operations on non-empty deques take exactly
one successful CAS operation to complete. If the deque contains one item (i.e.,
in state S1), the operation is completed in one atomic step (line 12) by setting
both anchor pointers to null. Otherwise, if the deque is unstable it is stabilized
first before attempting the pop. If the deque is stable and contains two or more
items (i.e., in state S2+), the pop operation is completed in one atomic step (line
14) by swinging the right anchor pointer to the left neighbor of the rightmost
node.

Reading Anchor in line 11 is the linearization point of a RightPop operation
on an empty deque. The success of the CAS in line 12 is the linearization point
of a RightPop from a single-item deque, and the success of the CAS in line 14
is the linearization point of a RightPop from a multiple-item deque.

The deque algorithm is symmetric. The PushLeft, PopLeft, and StabilizeLeft
routines are similar to the corresponding right side routines.

On architectures that support LL/SC (PowerPC, MIPS and Alpha) but not
CAS, implementing CAS(addr,exp,new) using the following routine suffices for



CAS-Based Lock-Free Algorithm for Shared Deques 657

the purposes of this algorithm. { repeat { if LL(addr) �= exp return false; } until
SC(addr,new); return true; }

2.4 Memory Management

The freeing and reuse of nodes removed (popped) from a deque object involve
two related but different issues: memory reclamation and ABA prevention. The
memory reclamation problem is how to allow the arbitrary reuse of removed
nodes, while still guaranteeing that no process accesses free memory [13]. The
ABA problem can occur if a process reads a value A from a shared location,
then other processes change that location to B and then back to A, later the
original process performs an atomic comparison (e.g., CAS) on the location and
the comparison succeeds where it should fail, leading to corrupting the object [9].
For this algorithm, the ABA problem occurs only if a node is popped and then
reinserted while a process holds a reference to it with the intent of using that
reference as an expected value of an ABA-prone comparison.

The simplest method for preventing the ABA problem is to include a tag
with each pointer to dynamic nodes that is prone to the ABA problem, such
that both are manipulated atomically, and the tag is incremented when the
pointer is updated [9]. In such a case, an otherwise ABA-prone CAS succeeds
only if the tag has not changed since the current process last read the location
(assuming that the tag has enough bits to make full wraparound between the
read and the CAS practically impossible). This solution allows removed nodes
to be reused immediately, but if used by itself it prevents memory reclamation
for arbitrary reuse.

Unless atomic operations on three or more words are supported, the inclusion
of ABA tags with the Anchor variable in an atomic block prevents the anchor
pointers from holding arbitrary pointer values, thus limiting the maximum size
of the deque. In such a case, nodes available for insertion in the deque can be
allocated in an array. The size of the array can be chosen such that both anchor
pointers, status tag, and ABA-prevention tag fit in an atomic block.3

Other memory management methods do not require the inclusion of an ABA-
prevention tag with Anchor and thus allow dynamic deque size using double-
width single-address primitives.

If automatic garbage collection is available, it suffices to nullify the contents
of removed nodes to prevent accidental garbage cycles from forming, in case
the fields of the removed node hold the addresses of other memory blocks that
would be otherwise eligible for recycling. Garbage collection techniques prevent
the ABA problem for this algorithm.

The hazard pointer method [13] allows the safe reclamation for arbitrary
reuse of the memory of removed nodes and provides a solution to the ABA-
problem for pointers to dynamic nodes without the use of per pointer tags or
3 For example, if the atomic block size is 64 bits, then 32 bits can be dedicated to

the ABA-prevention tag, two bits are occupied by the status tag, and each anchor
pointer can occupy up to 15 bits. Thus, the deque size is at most 215− 1 nodes.



658 M.M. Michael

per node reference counters. The method requires the target lock-free algorithm
to associate a small number of hazard pointers (three for this algorithm) with
each participating process. The method guarantees that no removed node is
reused or freed as long as some process’ hazard pointer has been pointing to it
continuously from a time when it was in the object. By preventing the ABA
problem for Anchor without using tags, it allows the anchor pointers to hold
arbitrary (two-byte-aligned) pointer values, and hence allows the size of the
deque and its memory use to grow and shrink arbitrarily, using double-width
single-address CAS or LL/SC. The figures in the previous subsections show
(in bold type) code related to memory management that uses hazard pointers,
and for simplicity uses ABA tags for the side pointers of each dynamic node.
Combined with hazard pointers, ABA tags do not prevent removed nodes from
being freed for arbitrary reuse.

2.5 Complexity

In the absence of contention, each operation on the deque takes a constant
number of steps. Under contention, we use the total work complexity measure.
Total work is defined as the worst-case total number of primitive steps executed
by P processes, during any execution of an arbitrary sequence of r operations on
the shared object, divided by r [10]. The total work of any operation of the new
algorithm, under contention by P processes is O(P ). Intuitively, the useful work
to complete an operation is constant, and at most constant work for each of the
other P − 1 concurrent operations is deemed useless as a result of the success of
the completed operation.

3 Discussion

3.1 Related Work

Universal lock-free methodologies (e.g., [8,17]) can be used to transform sequen-
tial object implementations including deques into shared lock-free implemen-
tations. However, the resulting lock-free implementations for almost all object
types, including deques, are extremely inefficient. This motivated the develop-
ment of object-specific algorithms.

The first lock-free shared deque algorithms were the linear (array-based) al-
gorithms of Greenwald [5] using DCAS. Agesen et. al. [1] presented two DCAS-
based algorithms. The first algorithm is array-based, offering improvements over
Greenwald’s. The other algorithm is dynamic and requires three DCAS opera-
tions per push and pop pair, in the absence of contention. Later, they presented
a dynamic DCAS-based algorithm [4] that requires two DCAS operations per
push and pop pair, in the absence of contention.

DCAS is not supported on most current processor architectures. Implemen-
tations of DCAS using CAS or LL/SC were proposed in the literature (e.g., [3,
10,17]). However, they all entail substantial overhead for every DCAS operation,



CAS-Based Lock-Free Algorithm for Shared Deques 659

prompting many researchers to advocate the implementation of DCAS efficiently
in hardware [5]. In fact, Agesen et. al. [1,4] state as the main motivation for de-
veloping their algorithms, justifying the need for hardware support for DCAS on
future architectures. This paper shows that DCAS is not needed for the efficient
implementation of lock-free shared deques.

It is worth noting that the algorithms of Agesen et. al. [1,4] allow execution
overlap between one operation from the right with one operation from the left.
On the other hand the new algorithm serializes operations on the deque as oper-
ations are serialized on the Anchor variable. However, even without concurrency,
the new algorithm promises much higher throughput than the former algorithms,
which at most allow the concurrency of two operations. Basic queuing theory
determines that one fast server is guaranteed to result in higher throughput than
two slow servers, if the response time of each of the slow servers is more than
twice that of the fast server. Operations of the former algorithms, even without
contention, are substantially slower than those of the new algorithm, taking into
account simulation of DCAS using CAS or LL/SC.

Finally, it is worth noting that sometimes single-producer work queues are
referred to in the literature as deques [2]. However, these objects do not actually
support the full semantics of the shared deque object (i.e., without restricting
the number or identity of operators). Furthermore, such objects do not even
support the semantics of simpler shared object types such as LIFO stacks and
FIFO queues that are subsumed by the semantics of the deque object type.

3.2 Summary

This paper was motivated by the significant reliability and performance advan-
tages of lock-free algorithms over conventional lock-based implementations, and
the practicality and performance deficiencies of prior lock-free algorithms for
shared deques, which depend on the strong DCAS primitive. We presented the
first lock-free algorithm for shared deques based on the weaker primitives CAS
or LL/SC. The algorithm can use single-word CAS or LL/SC, if the nodes avail-
able for use in the deque are preallocated statically. In order to allow the size
of the deque to grow and shrink arbitrarily, we employ single-address double-
width CAS or LL/SC. The new algorithm offers significant advantages over prior
lock-free algorithms for shared deques with respect to the strength of required
primitives and performance. With this algorithm, the deque object type joins
other object types with efficient CAS-based lock-free implementations, such as
LIFO stacks [9], FIFO queues [14,15,19], list-based sets and hash tables [6,12,
16], work queues [2,7], and priority queues [18].

References

1. Ole Agesen, David L. Detlefs, Christine H. Flood, Alexander T. Garthwaite, Paul
Martin, Nir N. Shavit, and Guy L. Steele, Jr. DCAS-based concurrent deques.
In Proceedings of the 12th Annual ACM Symposium on Parallel Algorithms and
Architectures, pages 137–146, July 2000.



660 M.M. Michael

2. Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. Thread scheduling
for multiprogrammed multiprocessors. In Proceedings of the 10th Annual ACM
Symposium on Parallel Algorithms and Architectures, pages 119–129, June 1998.

3. Hagit Attiya and Eyal Dagan. Improved implementations of binary universal op-
erations. Journal of the ACM, 48(5):1013–1037, September 2001.

4. David L. Detlefs, Christine H. Flood, Alexander T. Garthwaite, Paul Martin, Nir N.
Shavit, and Guy L. Steele, Jr. Even better dcas-based concurrent deques. In
Proceedings of the 14th International Symposium on Distributed Computing, LNCS
1914, pages 59–73, October 2000.

5. Michael B. Greenwald. Non-Blocking Synchronization and System Design. PhD
thesis, Stanford University, August 1999.

6. Timothy L. Harris. A pragmatic implementation of non-blocking linked lists. In
Proceedings of the 15th International Symposium on Distributed Computing, LNCS
2180, pages 300–314, October 2001.

7. Danny Hendler and Nir Shavit. Non-blocking steal-half work queues. In Proceedings
of the 21st Annual ACM Symposium on Principles of Distributed Computing, pages
280–289, July 2002.

8. Maurice P. Herlihy. A methodology for implementing highly concurrent ob-
jects. ACM Transactions on Programming Languages and Systems, 15(5):745–770,
November 1993.

9. IBM. IBM System/370 Extended Architecture, Principles of Operation, 1983. Pub-
lication No. SA22-7085.

10. Amos Israeli and Lihu Rappoport. Disjoint-access-parallel implementations of
strong shared memory primitives. In Proceedings of the 13th Annual ACM Sym-
posium on Principles of Distributed Computing, pages 151–160, August 1994.

11. Donald E. Knuth. The Art of Computer Programming, Volume 1: Fundamental
Algorithms. Addison-Wesley, 1968.

12. Maged M. Michael. High performance dynamic lock-free hash tables and list-based
sets. In Proceedings of the 14th Annual ACM Symposium on Parallel Algorithms
and Architectures, pages 73–82, August 2002.

13. Maged M. Michael. Safe memory reclamation for dynamic lock-free objects using
atomic reads and writes. In Proceedings of the 21st Annual ACM Symposium on
Principles of Distributed Computing, pages 21–30, July 2002.

14. Maged M. Michael and Michael L. Scott. Simple, fast, and practical non-blocking
and blocking concurrent queue algorithms. In Proceedings of the 15th Annual ACM
Symposium on Principles of Distributed Computing, pages 267–275, May 1996.

15. Sundeep Prakash, Yann-Hang Lee, and Theodore Johnson. A nonblocking algo-
rithm for shared queues using compare-and-swap. IEEE Transactions on Comput-
ers, 43(5):548–559, May 1994.

16. Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free extensible hash tables.
In Proceedings of the 22nd Annual ACM Symposium on Principles of Distributed
Computing, July 2003.

17. Nir Shavit and Dan Touitou. Software transactional memory. Distributed Com-
puting, 10(2):99–116, 1997.

18. H̊akan Sundell and Philippas Tsigas. Fast and lock-free concurrent priority queues
for multi-thread systems. In Proceedings of the 17th International Parallel and
Distributed Processing Symposium, April 2003.

19. John D. Valois. Implementing lock-free queues. In Proceedings of the Seventh
International Conference on Parallel and Distributed Computing Systems, pages
64–69, October 1994.


	Introduction
	The Algorithm
	Structures
	Valid States
	Operations
	Memory Management
	Complexity

	Discussion
	Related Work
	Summary




