Skip to main content

Selfish Routing in Non-cooperative Networks: A Survey

  • Conference paper
Book cover Mathematical Foundations of Computer Science 2003 (MFCS 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2747))

Abstract

We study the problem of n users selfishly routing traffics through a shared network. Users route their traffics by choosing a path from their source to their destination of the traffic with the aim of minimizing their private latency. In such an environment Nash equilibria represent stable states of the system: no user can improve its private latency by unilaterally changing its strategy.

In the first model the network consists only of a single source and a single destination which are connected by m parallel links. Traffics are unsplittable. Users may route their traffics according to a probability distribution over the links. The social optimum minimizes the maximum load of a link. In the second model the network is arbitrary, but traffics are splittable among several paths leading from their source to their destination. The goal is to minimize the sum of the edge latencies.

Many interesting problems arise in such environments: A first one is the problem of analyzing the loss of efficiency due to the lack of central regulation, expressed in terms of the coordination ratio. A second problem is the Nashification problem, i.e. the problem of converting any given non-equilibrium routing into a Nash equilibrium without increasing the social cost. The Fully Mixed Nash Equilibrium Conjecture (FMNE Conjecture) states that a Nash equilibrium, in which every user routes along every possible edge with probability greater than zero, is a worst Nash equilibrium with respect to social cost. A third problem is to exactly specify the sub-models in which the FMNE Conjecture is valid. The well-known Braess’s Paradox shows that there exist networks, such that strict sub-networks perform better when users are selfish. A natural question is the following network design problem: Given a network, which edges should be removed to obtain the best possible Nash equilibrium.

We present complexity results for various problems in this setting, upper and lower bounds for the coordination ratio, and algorithms solving the problem of Nashification. We survey results on the validity of the FMNE Conjecture in the model of unsplittable flows, and for the model of splittable flows we survey results for the network design problem.

Partly supported by the DFG-SFB 376 and by the IST Program of the EU under contract numbers IST-1999-14186 (ALCOM-FT), and IST-2001-33116 (FLAGS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beckmann, M.J.: On the theory of traffic flow in networks. Traffic Quart 21, 109–116 (1967)

    Google Scholar 

  2. Brucker, P., Hurink, J., Werner, F.: Improving local search heuristics for some scheduling problems. part II. Discrete Applied Mathematics 72, 47–69 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Beckmann, M., McGuire, C.B., Winsten, C.B.: Studies in the Economics of Transportation. Yale University Press, New Haven and London (1956)

    Google Scholar 

  4. Braess, D.: Über ein Paradoxon der Verkehrsplanung. Unternehmensforschung 12, 258–268 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cho, Y., Sahni, S.: Bounds for list schedules on uniform processors. SIAM Journal on Computing 9(1), 91–103 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  6. Czumaj, A., Vöcking, B.: Tight bounds for worst-case equilibria. In: Proc. of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2002), pp. 413–420 (2002)

    Google Scholar 

  7. Dafermos, S.C., Sparrow, F.T.: The traffic assignment problem for a general network. Journal of Research of the National Bureau of Standards, Series B 73B(2), 91–118 (1969)

    MathSciNet  Google Scholar 

  8. Even-Dar, E., Kesselmann, A., Mansour, Y.: Convergence time to nash equilibria. In: Proc. of the 30th International Colloquium on Automata, Languages, and Programming, ICALP 2003 (2003)

    Google Scholar 

  9. Feldmann, R., Gairing, M., Lücking, T., Monien, B., Rode, M.: Nashification and the coordination ratio for a selish routing game. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Finn, G., Horowitz, E.: A linear time approximation algorithm for multiprocessor scheduling. BIT 19, 312–320 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fotakis, D., Kontogiannis, S., Koutsoupias, E., Mavronicolas, M., Spirakis, P.: The structure and complexity of nash equilibria for a selish routing game. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 123–134. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  12. Feigenbaum, J., Papdimitriou, C., Shenker, S.: Sharing the cost of multicast transmissions. In: Proc. of the 32nd Annual ACM Symposium on the Theory of Computing, pp. 218–227 (2000)

    Google Scholar 

  13. Friesen, D.K.: Tighter bounds for lpt scheduling on uniform processors. SIAM Journal on Computing 16(3), 554–560 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  14. Garey, M.R., Johnson, D.S.: Computers and intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, New York (1979)

    MATH  Google Scholar 

  15. Gairing, M., Lüocking, T., Mavronicolas, M., Monien, B., Spirakis, P.: Extreme nash equilibria. Technical report, FLAGS-TR-03-10, University of Paderborn (2002)

    Google Scholar 

  16. Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM Journal of Applied Mathematics 17(2), 416–429 (1969)

    Article  MATH  Google Scholar 

  17. Haurie, A., Marcotte, P.: On the relatonship between nash-cournot and wardrop equilibria. Networks 15, 295–308 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hochbaum, D.S., Shmoys, D.: Using dual approximation algorithms for scheduling problems: Theoretical and practical results. Journal of the ACM 34(1), 144–162 (1987)

    Article  MathSciNet  Google Scholar 

  19. Hochbaum, D.S., Shmoys, D.: A polynomial approximation scheme for scheduling on uniform processors: using the dual approximation approach. SIAM Journal on Computing 17(3), 539–551 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  20. Jahn, O., Möhring, R.H., Schulz, A.S., Stier Moses, N.E.: System-Optimal Routing of Traffic Flows With User Constraints in Networks With Congestion. MIT Sloan School of Management Working Paper No. 4394-02 (2002)

    Google Scholar 

  21. Jain, K., Vazirani, V.: Applications of approximation algorithms to cooperative games. In: Proc. of the 33rd Annual ACM Symposium on Theory of Computing (STOC 2001), pp. 364–372 (2001)

    Google Scholar 

  22. Korilis, Y.A., Lazar, A.A., Orda, A.: Architecting noncooperative networks. IEEE Journal on Selected Areas in Communications 13(7), 1241–1251 (1995)

    Article  Google Scholar 

  23. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  24. Koutsoupias, E., Mavronicolas, M., Spirakis, P.: Approximate Equilibria and Ball Fusion. In: Proc. of the 9th International Colloquium on Structural Information and Communication Complexity, SIROCCO 2002 (2002) (accepted for TOCS)

    Google Scholar 

  25. Lücking, T., Mavronicolas, M., Monien, B., Rode, M., Spirakis, P., Vrto, I.: Which is the worst-case nash equilibrium? In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 551–561. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  26. Lenstra, J.K., Shmoys, D.B., Tardos, E.: Approximation algorithms for scheduling unrelated parallel machines. In: Proc. ofthe 28th Annual Symposium on Foundations of Computer Science (FOCS 1987), pp. 217–224 (1987)

    Google Scholar 

  27. McKelvey, R.D., McLennan, A.: Computation of equilibria in inite games. In: Amman, H., Kendrick, D., Rust, J. (eds.) Handbook of Computational Economics (1996)

    Google Scholar 

  28. Mavronicolas, M., Spirakis, P.: The price of selish routing. In: Proc. of the 33rd Annual ACM Symposium on Theory of Computing (STOC 2001), pp. 510–519 (2001)

    Google Scholar 

  29. Nash, J.: Non-cooperative games. Annals ofMathematics 54(2), 286–295 (1951)

    Article  MathSciNet  Google Scholar 

  30. Nisan, N.: Algorithms for selish agents. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 1–15. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  31. Nisan, N., Ronen, A.: Algorithmic mechanism design. In: Andersson, S.I. (ed.) Summer University of Southern Stockholm 1993. LNCS, vol. 888, pp. 129–140. Springer, Heidelberg (1999)

    Google Scholar 

  32. Osborne, M.J., Rubinstein, A.: A Course in Game Theory. The MIT Press, Cambridge (1994)

    MATH  Google Scholar 

  33. Papadimitriou, C.H.: On the complexity of the parity argument and other inefficient proofs of existence. Journal of Computer and System Science 48(3), 498–532 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  34. Papadimitriou, C.H.: Algorithms, games, and the internet. In: Andersson, S.I. (ed.) Summer University of Southern Stockholm 1993. LNCS, vol. 888, pp. 749–753. Springer, Heidelberg (2001)

    Google Scholar 

  35. Pigou, A.C.: The economics of ’welfare. Macmillan, Basingstoke (1920)

    Google Scholar 

  36. Roughgarden, T., Tardos, E.: How bad is selfish routing? Journal of the ACM 49(2), 236–259 (2002)

    Article  MathSciNet  Google Scholar 

  37. Roughgarden, T.: Designing Networks for Selfish Users is Hard. In: Proc. of the 42nd Annual ACM Symposium on Foundations of Computer Science (FOCS 2001), pp. 472–481 (2001)

    Google Scholar 

  38. Roughgarden, T.: The Price of Anarchy is Independent of the Network Topology. In: Proc. of the 34th Annual ACM Symposium on Theory of Computing (STOC 2002), pp. 428–437 (2002)

    Google Scholar 

  39. Schulz, A.S., Stier Moses, N.E.: On The Performance of User Equilibria in Traffic Networks. MIT Sloan School of Management Working Paper No. 4274-02 (2002)

    Google Scholar 

  40. Schuurman, P., Vredeveld, T.: Performance guarantees of load search for multiprocessor scheduling. In: Aardal, K., Gerards, B. (eds.) IPCO 2001. LNCS, vol. 2081, pp. 370–382. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  41. Wardrop, J.G.: Some theoretical aspects of road traffic research. In: Proc. of the Institute of Civil Engineers, Pt. II, vol. 1, pp. 325–378 (1952)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Feldmann, R., Gairing, M., Lücking, T., Monien, B., Rode, M. (2003). Selfish Routing in Non-cooperative Networks: A Survey. In: Rovan, B., Vojtáš, P. (eds) Mathematical Foundations of Computer Science 2003. MFCS 2003. Lecture Notes in Computer Science, vol 2747. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45138-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45138-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40671-6

  • Online ISBN: 978-3-540-45138-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics