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Abstract. In this paper, we propose a testing method for QoS functions in dis-
tributed multi-media systems, where we test whether playback of media objects
is correctly implemented or not in a client side program according to the quality
designated in advance, and/or whether a time lag between parallel playbacks of
multiple media objects is controlled within the specified time interval. In the pro-
posed technique, we describe test scenarios in timed EFSMs where we specify
behavior of an input flow transfered to a given IUT (implementation under test)
and behavior of playback with certain QoS functions observed from the IUT (e.g.,
the range of fluctuation of frame rates) . From the scenarios, we generate test
sequences to test whether a given IUT realizes the QoS functions specified in the
scenarios. In the proposed test method, we use a statistical approach where test
sequences take samplings of actual frame rates and/or time lags when an IUT is
executed, and report test results from ratio of samplings with low quality below a
threshold in a normal distribution of all samplings. We have implemented a test
system for test sequence execution in Java, and applied it to a video playback
system.

1 Introduction

As broadband infrastructure is widespread in the Internet in recent years, it has been
needed to establish a high-reliable development method for multi-media communication
systems. It is important for such systems to provide multi-media services with certain
QoS (Quality of Service) functions to end users. Among various QoS functions, control
mechanisms for the frame rate (the number of frames displayed every second) and for the
lip synchronization [8] among multiple concurrent media objects seem most important
ones. For development of multi-media systems with high-reliability, it is desirable to
establish a method for testing if those QoS functions are correctly implemented in a
given IUT (Implementation Under Test).

Traditional software testing methods which have succeeded in protocol engineering,
focus mainly on the correctness of input / output correspondences[11]. Therefore those
methods could not be directly applied to QoS testing such as video / audio playback
timings. Essentially important test problems of multi-media systems are not only corre-
spondence relations of input / output actions, but time difference between an input and
the corresponding output or the time duration in executing a sequence of actions. Then,
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even if all the correspondence relations of input / output actions hold, it is not necessarily
guaranteed to pass a test due to the time difference between input and output actions.

Even if temporal relations among multi-media objects are specified in detail by a
formalism such as Timed CTL [2] used in real time systems, it makes test sequences
be explosively complicated and is not realistic to test multi-media systems. Suppose
that a specification for a video playback system specifies that a video frame is drawn
exactly every 33 msec plus/minus 5msec. In general, when an IUT does not satisfy
such a specification a little (e.g., only a frame were delayed for 10msec), it may not
be considered a problem as long as media objects are played back naturally. So, for
QoS testing for the playback of media objects, it is desirable to statistically analyze the
temporal relations and give test results based on statistically calculated information[14].

There exist some studies on multi-media testing such as testing of multi-media
transmission systems [5], the quality of multi-media contents [6] and interoperability
and performance testing of distributed systems [14]. However they do not deal with
testing on temporal relations of input / output actions. A few researches, which deal with
temporal relations in multi-media systems explicitly, have been reported [4, 12]. These
studies propose a method to test binary temporal relations on the starting time and/or the
ending time between two objects by using a statistical approach. However they do not
deal with the quality during playback of an object. Moreover, [16] proposes a method
for functional testing of media synchronization protocols using a concurrent timed I/O
automata model, where a given IUT is tested by executing each input action within
an appropriate time interval calculated in advance, and by observing whether execution
timings of output actions are within the appropriate time interval. However, this approach
does not consider statistical aspects of multi-media systems. As a different approach,
[3] proposes a model checking method for media constraints such as lip synchronization
among multiple media objects.

In this paper, we suppose typical distributed multi-media systems consisting of
servers and clients connected via a network, and propose a method for testing QoS
of media playback functions w.r.t. frame rates and lip-synchronization for a client pro-
gram (IUT). In the proposed method, we specify scenarios for QoS functional tests for
an IUT in timed EFSM (a hybrid model of EFSM and timed automata [1]), where we
designate the input flow characteristics like jitter / packet loss ratio and the play-back
quality of frames to be realized for the given traffic. Furthermore, we specify the qual-
ity of inter-media synchronization as a constraint to be satisfied among sub-scenarios
corresponding to concurrent playbacks of different media objects (e.g., video and corre-
sponding audio) by using the constraint oriented description style [13]. From those test
scenarios, we generate test sequences to test whether a given IUT realizes the specified
QoS.

In the proposed test method, we use a statistical approach where test sequences
take samplings of actual frame rates and/or time lags between the latest frames on
multiple objects when an IUT is executed, and report test results from ratio of low
quality samplings (e.g., frame rates less than a threshold) below a specified threshold in
a normal distribution of all samplings.
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Fig. 1. Existing real-time testing methods

We have implemented a test system for executing test sequences in real-time in Java
language, and applied it to a sample video playback program. Our experimental results
show that our method works effectively for QoS functional tests.

2 Outline of Proposed QoS Functional Testing

As a target, we suppose distributed multi-media systems where a server transmits a stream
of a requested media object to each client. Here, we test whether the playback quality
of media objects at a client computer is feasible or not according to the characteristic of
the given input flow.

In existing real-time testing methods as in [7, 10], tests are carried out by giving each
input to the IUT at appropriate time, and by observing and testing if the corresponding
output action is executed at appropriate time satisfying the constraints given in the
specification (see Fig. 1). However, testing playback quality of media objects in multi-
media systems should be different from those existing methods since some jitter in
multi-media playback which may be caused by packet losses/delays is allowed to a
certain extent. So, we need a new testing method for playback quality of multi-media
objects.

In the proposed method, we adopt the statistical technique for testing playback qual-
ity of a single media object and of preciseness of inter-media synchronization among
multiple object playbacks at a client computer of a client-server based system.

2.1 Outline of Proposed Method

In the proposed method, we calculate the ideal playback quality of an object for a given
data stream (flow), and test whether or not the IUT works satisfying the constraints in
the specified test scenario by observing the time at which the object outputs each data
unit (called frame. e.g., a video picture, a unit of audio data, etc) as shown in Fig. 2.
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In general, when we measure the frame rate (the number of frames displayed every
second) of an object in a relatively short time interval (denoted as SP ), it can vary due to
the characteristics of an input flow such as jitter in packet arrival time and packet losses.
In the proposed method, we take a frame rate as a sampling every SP time interval for
a sufficiently long time interval (denoted as LP ), calculate statistic information from
distribution of those samplings, and judge from the information whether or not the IUT
correctly implements the control mechanism for the frame rate.

We compose a test scenario of the following two sub-scenarios: (1) traffic testing
scenario which characterizes an input flow, and (2) quality testing scenario which rep-
resents behavior of the playback with certain quality. From those scenarios, we generate
the following test cases (a set of test sequences).

– each test sequence transmits packets to the IUT at time within the allowable time
range considering jitters and bursts specified in the traffic testing scenario.

– each test sequence measures actual packet loss ratio in the IUT for a time interval
MP (such that SP ≤ MP ≤ LP ), and calculates the ideal frame rate fps′ which
is defined in Sect. 2.2.

– each test sequence measures average frame rate every time interval SP by observing
output from the IUT, and keeps it as a sampling. The test sequence collects samplings
for time intervalLP , and calculates the average value and the standard deviation from
those samplings. The test sequence judges whether the IUT correctly implements
the frame rate control mechanism with the specified QoS level, based on those
calculated statistical values and maximum tolerance acceptable denoted by ε which
the test examiner gives in advance (see Fig. 3).

For the sake of simplicity, we assume that the distribution of frame rates follows the
normal distribution like in Fig. 3. Then the judgment process can be described as the
following procedure.

1. calculate the average value µ and the standard deviation s derived from the samplings
kept during time interval LP .

2. apply normalization expression z = (x − µ)/s to ε, and calculate area C that is an
integral of (−∞, (ε − µ)/s] in the standard normal distribution (see Fig. 3).
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3. when the value of C is smaller than the reliance level r which was given by the test
examiner in advance, we conclude that the IUT passes the test.

In general, as shown in Fig. 3, we expect that the average frame rate µ measured
during time interval LP may match neither the original frame rate fps nor the frame
rate considering packet losses fps′ explained in the next section, due to external and/or
internal load factors.

2.2 Discussion about Playback Quality of Objects

The following factors are considered to give some influences to playback quality of
objects.

– jitter in packet arrival time and packet loss ratio
– heavy load/low performance at a client computer

For example, suppose that a server transmits to a client a video file encoded in 30
frames/sec at a fixed transmission rate. A client computer receives packets from the
server and tries to play back the video at an appropriate frame rate. In this case, the
playback quality depends on the receiving rate, packet loss ratio, jitters in packet arrival
time, and load of the client computer.

If the client receives packets at almost the same rate as the server transmits, if packet
loss ratio is almost 0 %, and if its load is light enough, the frame rate to be achieved
will be close to the originally encoded one (i.e., 30 frames/sec). On the other hand, if
the packet loss ratio is high and/or the client’s load is high, the frame rate will be less
than 30 frames/sec. According to the above discussion, we define the ideally achievable
frame rate as the following expression.

fps′ = fps · (1 − f(Loss)) · β

Here, fps and Loss denote the originally encoded frame rate and the packet loss
ratio, respectively. f(x) (0 ≤ f(x) ≤ 1) denotes the function representing ratio of how
much each packet’s loss causes the frame loss. Here, f(x) = x when each frame is
transmitted by exactly one packet. When each frame is transmitted by several packets
and/or there is inter-frame dependency like MPEG movies, f(x) will be larger than x.
β (0 < β ≤ 1) is another factor such as CPU load other than flow characteristics at a
client computer. For the sake of simplicity, we suppose that β = 1 in this paper.

3 Test Scenarios for Multi-media Systems

As explained before, each test scenario for a multi-media system consists of a multiple
sub-scenarios. We specify these scenarios in a timed EFSM. In timed EFSM, variables
and guard expressions with those variables (i.e., execution condition of transitions)
used in EFSM can be used in addition to the basic functions of timed automata[1].
Moreover, synchronization and constraints among multiple timed EFSMs are specified
in the form of synchronized parallel execution of those timed EFSMs using the multi-
way synchronization of LOTOS [9]. That is, we specify behavior of the whole system by
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making timed EFSMs execute synchronously and in parallel with the constraint oriented
description style[13].

A timed EFSM is given as 6-tupleM =< S, A, C, V, δ, s0 >, whereS ={s0, s1, · · · ,
sn} is a finite set of states, A is a finite set of actions (events), C is a finite set of clock
variables, V is a finite set of variables, δ : S × A × C × V → S × V is a transition
function, and s0 is an initial state. Let G be a set of gates which represent interaction
points to an external environment and IO be a set of inputs/outputs from/to a gate. Here,
A ⊆ G × IO. g?x represents an action which inputs a value from gate g and stores
it in variable x, and g!E represents an action which outputs the value of expression E

to gate g, respectively. A transition function δ is represented by s
g?x[Guard]−→

Def s′ where
s and s′ are the current state and the next state just after an action is executed at state
s, respectively. A transition condition for an action, denoted by Guard, is represented
by a logical conjunction of linear inequality with clock variables in C, variables in V
and constants. Def is a set of value assignments to variables including reset of clock
variables, which is represented as {x := x + 1, clock := 0} for example, and a value
assignment is executed when a state transition occurs.

We specify interaction and synchronization among timed EFSMs with the multi-way
synchronization mechanism. The test scenario for the whole system S can be defined as
follows.

S ::= S |[gate list]| S | S ||| S | (S) | EFSM

Here, EFSM is a name of a timed EFSM, and |[gate list]| is the synchronous
parallel operator where gate list is a gate list of the events to be synchronized between
its operator’s both sides of timed EFSMs. The operator ||| is the asynchronous parallel
operator, and it denotes that its operator’s both sides of timed EFSMs can run in parallel
without any synchronization. Those parallel operators can be used recursively.

3.1 Test Scenario for Object Playback Functions

We suppose an IUT which plays back media objects such as audio and video data. We
specify a test scenario to test a playback function of the IUT with two timed EFSMs: ST

and SQ, which correspond to the traffic testing scenario and the quality testing scenario,
respectively. The whole test scenario Player is given as follows.

Player := ST |||SQ

ST specifies traffic characteristics which the IUT receives, and SQ specifies quality
constraints about frame displaying time which the IUT should satisfy. Note that these
scenarios test given IUTs from external environments.

In ST , we explicitly specify an allowable time interval between subsequent packets
which the IUT receives. Here, for applicability to various network environments, we
use four parameters: (1) transmission rate AvRT of a media object, (2) maximum burst
length Burst, (3) maximum packet loss ratio Loss, and (4) maximum jitter in packet
arrival time JT . For the sake of simplicity, we assume that all packets have the same
size and denote this by PctSz. We show example description of ST in Fig. 4 where a
double circle means the initial state.
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Fig. 4. Traffic Testing Scenario

skip[TF(q)+FJT+1= clk
and (sn+1)/(sn+1+vn) < f(Loss)]
{sn:=sn+1, clk:=0}

v?frame[TF(q)-FJT ≤ clk ≤ TF(q)+FJT 
and (sn+vn+1)·TF(q)-MD ≤ clk2 
              ≤ (sn+vn+1)·TF(q)+MD]
{vn:=vn+1, clk:=0}

clk:=0
clk2:=0SQ

reset[MP/TF(q)≤sn+vn]
{sn:=0,vn:=0}

Fig. 5. Quality Testing Scenario

In Fig. 4, clk and TP (q) represent a clock variable and a time interval by which a
server transmits each packet to realize playback quality q of a media object, respectively.
Here, TP (q) = PctSz/AvRT . ln and pn denote the numbers of lost packets and
transmitted packets during a time interval MP , respectively. There are four branches in
ST : (1) normal mode: each packet is transmitted to gate n(n!pct) in a time range of
maximum jitter JT , that is, TP (q)−JT ≤ clk ≤ TP (q)+JT ; (2) burst transmission:
when going into burst transmission mode (burst start), each packet is transmitted in
smaller interval, that is, clk < TP (q) − JT while the totally transmitted data size
does not exceed Burst. When burst transmission finishes, the current state returns to a
normal mode (burst end); (3) packet loss: each packet can be lost if packet loss ratio
((ln + 1)/(pn + ln + 1)) measured during time interval MP is less than Loss; and
(4) initialization: pn, ln and burst are initialized to 0 (reset) every time interval MP .
As we will explain in Sect.4, by executing these choices repeatedly in an appropriate
probability we can test the IUT in the environment including jitter, loss and burst to
receive packets.

Similarly, we give SQ on playback quality of frames. For SQ, we use two parameters
FJT and MD, where FJT specifies the maximum value of fluctuation on the time
interval of subsequent frames while a media object is played back, and MD specifies
the maximum time skew representing how long the current frame can be delayed or
preceding from the expected displaying time of the frame (e.g., 1000th frame in 30 fps
video is expected to be displayed at 1000×33ms=33sec after the video started). We show
an example description of SQ in Fig. 5, where TF (q) indicates the standard time interval



326 Tao Sun et al.

between two subsequent frames with quality q, and vn and sn indicate the numbers of
displayed frames and skipped frames measured during time interval MP , respectively.

There are three branches in SQ of Fig. 5: (1) frame display: when the current time
(clk) is within the appropriate time interval (TF (q) − FJT ≤ clk ≤ TF (q) + FJT )
and the current frame (sn+vn+1-th frame) is not too much delayed or preceding from
the expected time ((sn+vn+1)·TF (q)−MD ≤ clk2 ≤ (sn+vn+1)·TF (q)+MD),
a frame is allowed to be displayed (v?frame); (2) frame skipping: when the current
time exceeds the allowable time interval without displaying any frames and the frame
skipping rate (sn+1)/(sn+vn+1) measured during MP is less than f(Loss) defined
in Sect. 2.2, a frame is allowed to be skipped (skip[TF (q) + FJT + 1 = clk]); and (3)
initialization: we initializes variables sn and vn to 0 every time interval MP .

3.2 Scenario for Testing Lip-Synchronization among Multiple Objects

We describe a sub-scenario for testing lip-synchronization among multiple media objects
as a constraint among multiple quality testing scenarios for those objects, using the
constraint oriented description style[13].

For example, let Player[nv, v, skipv] and Player[na, a, skipa] be quality testing
scenarios for video playback and for audio playback, respectively, and we assume that
these two scenarios are executed independently in parallel. We also denote nv, na and
v, a to be input gate names and output gate names of video and audio, respectively.
skip behaviors for video and audio are distinguished by skipv and skipa. Moreover,
we let cv and ca denote the sequence numbers of frames of video and audio frames,
and TFv(qv) and TFa(qa) denote the playback interval of video and audio frames,
respectively. Here, we describe the sub-scenario Constsync such that the maximum
time skew between video and audio must be within Tlipmsec as shown in Fig. 6. In
general, Tlip should be less than 80msec. In Fig. 6, it is explicitly described that each
output of a video frame v? (output of an audio frame a?) is allowed only if the time
skew between the expected time of the current frame and that of audio (video) is kept
less than Tlip msec.

The test scenario for the whole system including the lip-synchronization constraint
is given by the following constraint oriented description.

(Player[nv, v, skipv]|||Player[na, a, skipa])|[v, a, skipv, skipa]|Constsync

v?data[(cv+1)·TFv(qv)-ca·TFa(qa) ≤Tlip]
{cv:=cv+1}

Const sync

a?data[(ca+1)·TFa(qa)-cv·TFv(qv) ≤Tlip]
{ca:=ca+1}

cv:=0
ca:=0

skipv
{cv:=cv+1}

skipa
{ca:=ca+1}

Fig. 6. Constraint for Lip Synchronization
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4 Test Case Generation

We derive test sequences from the traffic testing scenario, the quality testing scenario,
and the constraint for lip synchronization, explained in Sect. 3. Hereafter, we denote
each test sequence as the following sequence Tseq.

Tseq := a.Tseq|Tseq +p Tseq|(Tseq)|Tseq∗K

Here, a.Tseq, Tseq +p Tseq and Tseq∗K denote sequential execution of actions,
choice between two sequences and iterative execution of the sequence, respectively.
Tseq1 +p Tseq2 specifies that Tseq1 and Tseq2 are executed at probability 1 − p and
p, respectively. In Tseq∗K , K denotes the number of iterations. If these values are not
specified, default values such as p = 0.5 and K = 100 are used when executing test
sequences.

4.1 Test Case Generation for a Single Object Playback

In the proposed method, the test system observes time at which each frame is displayed
in the IUT, takes a sampling of a frame rate every time interval SP , and reports the
test result by calculating ratio of samplings with low frame rate below a threshold in a
normal distribution of all samplings as explained in Sect. 2.1.

Consequently, from test scenarios ST and SQ, we derive test sequences TestT and
TestQ by adding new sequences for collecting a sampling every time interval SP and
for test verdict computation when monitoring period LP expires, and by fixing the
probability of choice “+” and the number of iteration “*” in the sequences. We show
examples of TestT and TestQ in Table 1 and Table 2, respectively.

In Table 1, Open() and Read() denote some file operation primitives. Packet()
denotes a primitive to create a packet. In Table 2 Sampling(x), CalcStatistics and
Judgesult are primitives which recordx as a sampling, calculates statistical information,
and calculates test verdict, respectively.

Table 1. Example Test Sequence TestT for Testing Input Traffic

TestT :=
{fp := Open(file)}.
{clk := 0, Loss := 0.0, ln := pn := burst := 0}.
({pct := Packet(Read(fp))}.
n!pct[TP (q) − JT ≤ clk ≤ TP (q) + JT ]{pn := pn + 1, clk := 0}

+[MP/TP (q) ≤ pn + ln]{pn := ln := 0}.
+([TP (q) + JT + 1 = clk and (ln + 1)/(pn + ln + 1) ≤ Loss]

{ln := ln + 1, clk := 0}
+(n!pct[clk < TP (q) − JT and burst + PctSz ≤ Burst]

{burst := burst + PctSz, pn := pn + 1, clk := 0}
)∗(Burst/PctSz)

)
)∗(LP/TP (q))
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Table 2. Example of Test Sequence TestQ for Testing Playback Quality

TestQ :=
{clk2 := 0}.
({clk := 0, vn := sn := 0}.

(v?frame[TF (q) − FJT ≤ clk < TF (q) + FJT and
(sn + vn + 1) · TF (q) − MD ≤ clk2 ≤ (sn + vn + 1) · TF (q) + MD]

{vn := vn + 1, clk := 0}
+skip[TF (q) + FJT + 1 = clk]{sn := sn + 1, clk := 0}
+[MP/TF (q) ≤ sn + vn]{sn := vn := 0}.

)∗(SP/TF (q))

.Sampling(vn/SP ){vn := 0, sn := 0}
)∗(LP/SP )

.CalcStatistics.JudgeResult

Derived test sequences TestT and TestQ must be executed in parallel for an IUT.
Since each action in those sequences can be executed at any time instance within a speci-
fied time interval, the number of possible action sequences for their parallel composition
will be so many. Therefore, we do not serialize those sequences. Instead, we make the
test system capable of executing multiple sequences in parallel.

4.2 Test Case Generation for Lip-synchronization
among Multiple Objects Playback

In the proposed method, a test of the lip-synchronization among multiple playbacks of
different media objects is similarly carried out using the statistical method stated in Sect.
2.1, where a time lag of the latest frames between two objects are collected as samplings.
From test scenario Constsync in Sect. 3.2, we can derive a test sequence Testsync as
shown in Table 3.

Let us denote Testv and Testa be test sequences for testing playbacks of video and
audio objects, respectively. Here, Testv := (TestTv |||TestQv ). With Testv , Testa and
Testsync, we finally obtain the following test sequence for testing a given IUT w.r.t. lip
synchronization and playback qualities.

(Testv|||Testa)|[v, a, skipv, skipa]|Testsync

Table 3. Example Test Sequence Testsync for Lip Synchronization

Testsync :=
{ca = cv = 0}.
(v?data{cv := cv + 1}.Sampling((cv + 1) · TFv(qv) − ca · TFa(qa))
+skipv{cv := cv + 1}
+a?data{ca := ca + 1}.Sampling((ca + 1) · TFa(qa) − cv · TFv(qv))
+skipa{ca := ca + 1}
)∗(LP/Min(TFv(qv),TFa(qa))

.CalcStatistics.JudgeResult
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Since the above test sequence contains parallel and synchronization behaviors, we
have to implement a test system which provides parallel and synchronous execution of
multiple test sequences. Details of a test system are given in Sect. 5.

5 Implementation of Test System

A test system consists of a given IUT and a program which executes test sequences
derived in Sect. 4. We call the program as a tester. We would like to treat a given IUT
as a black box. So, we make the IUT and its tester run in parallel as different processes,
and make them communicate with each other.

5.1 Implementation of Tester Program

Test sequences which we derived in Sect. 4 have the following characteristics.

(1) each action in a sequence specifies a time range during which it can be executed.
The exact execution time is not specified.

(2) a probability is specified in each choice “+” between two sub-sequences. The number
of iterative execution of a sub-sequence is also specified.

(3) for testing an object playback, two sequences are specified to be executed in parallel.
(4) for lip-synchronization among multiple object playbacks, a constraint sequence is

also specified to be executed synchronously with multiple test sequences for those
objects.

(5) statistical calculation primitives such as Sampling(), CalcStatistics(), JudgeResult()
are contained in test sequences.

We have implemented a tester program which satisfies the above requirements in
Java language. Since test sequences are given in the syntax defined in Sect. 4, first
we have developed a parser program using JavaCC. Based on some techniques used
in our real-time LOTOS compiler [17], we have implemented parallel execution and
synchronization mechanisms for multiple test sequences.

For the above (1), it is desirable to test if the IUT works correctly for all time instances
within the specified time range of each action in a given test sequence. However, it is
impossible since combination of time instances in multiple actions will be infinite (in
case of dense time). So, we have just implemented our tester only to select a time instance
at random within the specified range if the next action in the test sequence is an output
to the IUT. If the next action is an input from the IUT, the tester measures the clock
value based on the current system time and checks whether or not the action has been
executed within the specified time range. If so, the tester continues. Otherwise, it stops
to report that the test has failed. For the above (2), the tester just selects one of branching
sub-sequences based on random numbers, and repeats the specified sub-sequence the
specified times, respectively. To improve the validity of the test result in (1), we can
increase the number of iterations1. For the above (5), we have implemented statistical
calculation primitives in Java, according to techniques explained in Sect. 2.1.

1 In [4, 12], time instances near the borders of time ranges are intensively selected for tests. We
can also adopt the similar technique to improve the test validity.
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5.2 Construction of Test Environment

The tester must be able to observe the time when each frame is output in the IUT. Here,
we assume that a certain event occurs and the time is notified to the tester via gate v
when a frame is output in the IUT. The test sequence for a single object playback derived
in Sect. 4 contains parallel execution of two sub test sequences: TestT and TestQ. In
this case, the whole test system is executed as shown in Fig. 7 (a). The test sequence for
lip synchronization between two objects contains four sub-test sequences (two for each)
and one constraint Testsync. These sequences are executed as shown in Fig. 7 (b). In
order to reduce the influence coming from the test environment such as additional delay
and jitter, we execute both the tester and the IUT in the same computer or in the separate
computers in the LAN where the influence of delay is smaller.

6 Experimental Results

With the test system explained in Sect. 5, we have executed test sequences and a given
IUT and measured distribution of actual frame rates.

Our test purpose is to investigate whether a given IUT works satisfying QoS functions
(specified by ideal frame rate fps′, maximum tolerance acceptable ε, and reliance level
r of area below ε in the standard normal distribution) when the IUT receives packets
according to the specified traffic pattern (given by packet loss ratio Loss, maximum
jitter JT in packet arrival time, and maximum burst length Burst).

Two kinds of programs have been used as IUT in our experiments: IUTa which
decodes and displays frames immediately after receiving packets (not regulate frame
rates); and IUTb which receives packets and stores them in a given buffer for absorbing
jitters of the packet arrival time in order to display frames at the specified frame rate.
We have implemented those IUTs in JMF2.1.1c(Java Media Framework) [18].



QoS Functional Testing for Multi-media Systems 331

Table 4. Parameters used in Ex-
periments

JT Loss Burst(bit)
Exp1 30ms 0.0 0
Exp2 10ms 0.0 0
Exp3 30ms 0.1 0
Exp4 30ms 0.1 58800
Exp5 30ms 0.2 58800
Exp6 30ms 0.0 0
Exp7 30ms 0.0 58800
Exp8 30ms 0.1 0
Exp9 30ms 0.2 0
Exp10 30ms 0.2 58800

Table 5. Test Results

average standard
devia-
tion

ε ratio under ε test result

Exp1 24.6 2.65 25.0 4.2% failed
Exp2 24.8 1.71 25.0 0.0% passed
Exp3 22.0 3.50 22.5 12.3% failed
Exp4 19.6 4.36 22.5 21.0% failed
Exp5 20.1 5.03 20.0 20.3% failed
Exp6 25.0 — 25.0 0.0% passed
Exp7 25.0 — 22.5 0.0% passed
Exp8 22.5 4.23 18.0 1.8% passed
Exp9 20.0 4.86 16.0 16.6% failed
Exp10 19.7 3.80 16.0 20.3% failed

With the test system explained in Sect.5, by changing the above parameters given to
IUTa and IUTb, we have examined the quality of playback mechanism in those IUTs
(Exp1 to Exp 10). The list of parameters is shown in Table 4.

We have used a motion JPEG stream (320×240pixels, 25fps, the size of each frame
is 5.88kbit) in all of our experiments and have applied SP=1s, MP=60s, LP=1800s and
TP=40ms (i.e, each frame is transmitted by one packet) to the IUT. In the experiments
we have measured the distribution of frame rates, by which we can decide whether the
IUT passes the test or not.

First, we have executed Exp1 to Exp5 for the IUTa. In the Exp1 and Exp2 we
have investigated the difference in the distribution of the frame rate by changing the
value of JT . From Exp3 to Exp5 we have executed test sequences which contains
jitters, packet losses (Exp3, Exp4) and burst transmission (Exp5) to the IUTa. The
distribution of samplings for these experiments are shown in Fig. 8 and Fig. 9. These
figures show that samplings are distributed in the wide range where the center is around
fps′ = 25 × (1 − Loss), and the distribution range of samplings is influenced by each
of jitters, packet losses, and burst transmission.
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Then, we have executed Exp6 to Exp10 for the IUTb which has a buffer and can
control the frame rate. In Exp6 and Exp7, we have executed the test sequence only
containing jitters, and the test sequence containing both jitters and burst transmission,
respectively. In Exp8 and Exp9, we have executed the test sequence containing jitters
and packet losses, where the value of Loss is bigger in Exp9 than in Exp8. In the last
experiment Exp10, the test sequence contain all factors: jitters, packet losses and burst
transmission. The distribution of these experiments are shown in Fig. 10 and Fig. 11. In
Fig. 10, we see that all of samplings concentrate in 25(fps′) or 24(fps′ − 1) because
Jitters were absorbed. On the other hand, if we compare Exp8 with Exp9 in Fig. 11, we
see that the distributed range of samplings is wider when the value of Loss is higher. We
think that this is because we specify Loss as the maximum packet loss ratio for period
MP=60s, but the actual packet loss ratio measured during short period (e.g., SP ) may
be more or less than the value of Loss. In Fig. 11 comparing Exp8 with Exp9, we see
that the influence due to burst transmission is small.

Next, with the method explained in Sect.2.1 , we have decided whether tests pass or
not. We calculated the average and standard deviation of samplings for each experiment
by supposing their normal distribution. Here, for example we set maximum tolerance
acceptable ε as fps′ ± 20% and reliance level r as 2%. The list of the average, the
standard deviation, the ratio of area under ε and the test result for all experiments are
shown in table 5. According to the table, we see that the IUTa passes the test in the
condition which JT was within 10ms and Loss was close to 0 (Exp2). About IUTb, it
passes the test when JT was within 30ms and Loss was within 0.1 (Exp6, 7, 8).

In order to evaluate the validity of our assumption which the distribution of frame
rates follow the normal distribution, we calculated the proportion of the samplings under
(or upper when ε > fps′) ε to the whole of samplings and the proportion of C [−∞, (ε−
µ)/s] to the whole area in the normal distribution. We show the result in Table 6.
Comparing the normal distribution and the distribution of the actual samplings, we see
that the proportion in the normal distribution is in most cases bigger than in the actual
samplings for each ε. If the test passes on the proposed method, then the actual proportion
under ε was not bigger than reliance level r. So we think our assumption is valid enough.
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Table 6. Comparison between Normal Distribution and Distribution of Actual Samplings

proportion under(upper) ε

frame rate normal distribution actual samplings
16 0.04182 0.002277
17 0.07493 0.010245
18 0.12302 0.026750
19 0.19215 0.088218
20 0.27759 0.198633
21 0.38209 0.355150
22 0.49601 0.582242
23 0.39358 0.417758
24 0.28774 0.211725
25 0.20045 0.076836
26 0.12924 0.018213
27 0.07927 0.003984

7 Conclusion

In this paper, we proposed a test method for QoS functions in distributed multi-media
systems. In the proposed method, using timed EFSM model, we describe a test scenario
which specifies input flow characteristics and play-back quality to be realized for the
flow, and generate test sequences from the scenario. Using the generated test sequences,
we can statistically test whether a given IUT realizes certain quality for a given input
flow. Through experiments with our test system and sample IUTs, it is confirmed that
the proposed test method can efficiently test given IUTs depending on target network
environments and required playback quality.

As part of future work, we would like to test various IUTs where some QoS control
mechanisms (lip synchronization, prioritized media scaling, and so on) are implemented,
assuming various types of network traffic. Through such experiments, applicability of
our method should be clarified.
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