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Abstract. Non-rigid registration of landmarked datasets is an impor-
tant problem that finds many applications in medical image analysis. In
this paper, we present a method for interpolating a sequence of land-
marks. The sequence of landmarks may be a model of growth, where
anatomical object boundaries are parametrized by landmarks and the
growth processes generate a landmarked sequence in time. In a vari-
ational optimization framework, the matching diffeomorphism for this
problem is generated from a gradient algorithm based on the Euler-
Lagrange equation of a cost framed in the inexact matching setting.

1 Introduction

The problem of generating dense, non-rigid transformations for sparse landmark
matching has been studied by many groups, in particular in the small defor-
mation setting by Bookstein [3] and in the large deformation, diffeomorphism
setting by Joshi [7], Younes [4]. In applications relating to analysis of structures
in medical images, it is natural to study diffeomorphic transformations which
are invertible and smooth functions. The one-to-one property of these transfor-
mations ensures that disjoint sets remain disjoint and no fusion of points oc-
cur. The continuity properties ensure that connected sets remain connected and
neighbourhoods are preserved. Smoothness properties of these transformations
preserve the smoothness properties of anatomical object boundaries. In the large
deformation setting as proposed by Christensen [5] for the image matching case
and extended to landmark matching by Joshi [7], such a transformation linking
given landmark datasets is generated as the evolution of a flow of a smooth ve-
locity vector-field, and constraints on smoothness of the vector-fields determine
the existence and uniqueness of transformations in the space of diffeomorphisms
[6,8].
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An important extension to this problem is finding a diffeomorphism inter-
polating a sequence of landmarks, which may be modelling for example, the
trajectory of a set of template landmarks in space and time. These indexed
landmarked datasets may be derived from images taken of anatomical structures
that are changing shape and form under the influence of growth or neurodegen-
erative processeses. The estimation of this interpolating diffeomorphism, in the
framework of large deformations inexact matching is achieved by the variational
optimization of a cost or energy functional containing a term that measures the
smoothness of the estimated transformation, which is framed in the context of
smoothness of vector fields that generate this transformation, and is maximized,
while concurrently minimizing a term that measures the error in landmark po-
sitions after transformation. We present this inexact matching cost and derive
its associated Euler-Lagrange equation in the space of smooth vector fields that
generate this transformation. We specialize to the case where the matching is
between a pair of landmark datasets instead of a sequence of landmark dataset
and present a gradient algorithm based on the corresponding Euler-Lagrange
equation to estimate the matching transformation.

2 Mathematical Setup and Notation

Let the background space Ω be a bounded domain with piecewise C1 boundary
on R

n on which the image functions I : Ω → R
d and the sparse image represen-

tations using landmarks x = {xk ∈ Ω}k=1,... ,N are defined. A homeomorphism
on the background space is a bijective (invertible) function ϕ : Ω → Ω, which,
with its inverse ϕ−1 is continuous. Let the set of homeomorphisms acting on the
background space be denoted by Hom(Ω). The homeomorphisms form a group
for the usual law of composition ψ · ϕ .= ψ ◦ ϕ. Moreover, for any ϕ ∈ Hom(Ω)
and any landmark set x, ϕ.x .= {ϕ(xk)}k=1,... ,N defines an action of Hom(Ω)
on the set of landmarks. Let G be a sub-group of Hom(Ω) (for instance the set
diffeomorphisms Diff(Ω) where any ϕ ∈ Diff(Ω) is, with its inverse, continuously
differentiable).

Let v : [0, 1] → V be a time-dependent velocity vector-field where V is a
Hilbert space of smooth, compactly supported vector fields on Ω. Let such a
velocity vector field define the evolution of a curve φv : [0, 1] → G via the
evolution equation

d

dt
φv

t (x) = vt(φv
t (x)) (1)

where the subscript in φv is used to explicitly denote the dependence of φ on
the associated velocity field v. The terminal point of the curve φv at t = 0 is
φv

0 = Id ∈ G where Id is the identity transformation Id(x) = x,∀x ∈ Ω. The end
point of the curve φv at time t = 1 is the particular diffeomorphism φv

1 = ϕ ∈ G
that links the given landmark datasets x and y such that yk = ϕ(xk) and it
is this element ϕ that we compute as the end point φv

1 associated to a flow v.
Thus, we seek a time-dependant velocity vector field v which when integrated
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via equation 1 generates the particular diffeomorphism matching the landmark
datasets.

Existence and uniqueness properties of transformations generated via equa-
tion 1 depend on the smoothness constraints placed on vector fields allowed in
V [6,8]. One choice to ensure existence of diffeomorphisms as solutions to the
ODE equation 1 has been to construct V as the completion of C∞

c (Ω,Rn) for
the inner-product in space V defined through a differential operator L (denoting
its adjoint as L†) on C∞

c (Ω,Rn) given by:

〈f, g〉V
.= 〈Lf,Lg〉2 = 〈L†Lf, g〉2, (2)

where 〈, 〉2 is the usual L2-product for square integrable vector-fields on Ω and
f, g are vector-fields in V . It follows from the assumptions made in the construc-
tion of V that it is a reproducing kernel Hilbert space, for each point x ∈ Ω
and each tangent vector αx ∈ TxΩ, the linear form δαx

x : f �→ 〈f(x), αx〉Rn is
continous for all f ∈ V . Then, it follows from the Riesz Representation theorem
that there exists a representor Kαx

x ∈ V of the linear form δαx
x such that

δαx
x (f) = 〈f(x), αx〉Rn = 〈Kαx

x , f〉V (3)

and that representor is given by Kαx
x (y) = k(x, y)αx for each point y ∈ Ω. Since

〈Kαx
x , f〉V = 〈L†LKαx

x , f〉2, we see by writing the L2-product that k(x, y) is the
Green’s function for the operator L†L. We will however not need to explicitly
find the Green’s function for a specified operator L, rather we can specify such
a function that has the properties required of one, and following [4], we will
choose k(x, y) = exp(−‖x−y‖2/2σ2)In×n where In×n is an identity matrix. The
gaussian kernel which is chosen does not conform with our usual assumption of
null boundary conditions for the vector fields on Ω. In the landmark case, using
a more refined kernel would make the method more complex without really
improving the quality.

Let the notation φs,t : Ω → Ω denote the composition φs,t = φt ◦(φs)−1. The
interpretation of φs,t(y) is that it is the position at time t of a particle that is at
position y at time s. Therefore φv

1(x) = φv
0,1(x) is the function that denotes the

position at time t = 1 of particle that is at position x at time 0. The variation
of φv

s,t under the perturbation v �→ v + εh is given by [1]:

∂hφ
v
s,t = (

∂

∂ε
φv+εh

s,t )|ε=0 =
∫ t

s

Dφv
u,t ◦ φs,uhu ◦ φs,udu. (4)

3 Estimation of Diffeomorphisms for Interpolating
Space-Time Landmark Sequence

Let x = {xk, k = 1, . . . , N} at t = 0 denote the template landmarks, and y(t) =
{yk(t), k = 1, . . . , N} for t ∈ (0, 1] denote the time-indexed sequence of target
landmarks in R

n characterizing for instance a sampling of the motion of template
landmarks in space and time. The variational problem for the estimation of the
element in the group of diffeomorphisms matching the time-indexed sequence of
landmarks is given as follows.
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Theorem 1 (Space-Time Landmark Matching). Given template land-
marks x = {xk, k = 1, . . . , N} at t = 0 and a sequence of time-indexed tar-
get landmarks y(t) = {yk(t)}, k = 1, . . . , N} for t ∈ (0, 1]. The velocity field
v̂ ∈ L2([0, 1], V ) interpolating the landmarks is given by

v̂ = arginf
v∈L2([0,1],V )

E(v) .=
∫ 1

0
‖vt‖2

V dt︸ ︷︷ ︸
E1(v)

+
1
σ2

∫ 1

0

N∑
k=1

‖yk(t) − φ0,t(xk)‖2
Rndt

︸ ︷︷ ︸
E2(v)

(5)

and satisfies the Euler-Lagrange equation given by

(∇vE)t = 2vt − 2
σ2

N∑
k=1

K
(
∫ 1

t
Dφv

t,u(xk(t))t(yk(u)−xk(u))du)
xk(t) = 0 (6)

Proof. The V -gradient of the first term when v ∈ L2([0, 1], V ) is perturbed by
h ∈ L2([0, 1], V ) is given by:

∂hE1(v) = 2
∫ 1

0
〈vt, ht〉V dt (7)

The V -gradient of the second term in the cost (equation 5) is :

∂hE2(v) =
−2
σ2

∫ 1

0

N∑
k=1

〈yk(t) − φv
0,t(xk), ∂hφv

0,t(xk)〉Rndt

(a)
=

−2
σ2

∫ 1

0

N∑
k=1

〈yk(t) − φv
0,t(xk),

∫ t

0
Dφv

u,t ◦ φv
0,u(xk)hu ◦ φv

0,u(xk)du

︸ ︷︷ ︸
∂hφv

0,t(xk)

〉Rndt

(b)
=

−2
σ2

∫ 1

0

∫ t

0

N∑
k=1

〈yk(t) − φv
0,t(xk), Dφv

u,t ◦ φv
0,u(xk)hu ◦ φv

0,u(xk)〉Rndudt

(c)
=

−2
σ2

∫ 1

0

∫ 1

u

N∑
k=1

〈yk(t) − φv
0,t(xk), Dφv

u,t ◦ φv
0,u(xk)hu ◦ φv

0,u(xk)〉Rndtdu

where (a) follows by writing the differential ∂φv
0,t(xk), (b) follows from rearrang-

ing the integral and the inner-product, (c) follows by interchanging the order of
integration with respect to t and u. Interchanging the roles of t and u gives (d)
to be:
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∂hE2(v)
(d)
=

−2
σ2

∫ 1

0

∫ 1

t

N∑
k=1

〈(yk(u) − φv
0,u(xk)), Dφv

t,u ◦ φv
0,t(xk)ht ◦ φv

0,t(xk)〉Rndudt

(e)
=

−2
σ2

∫ 1

0

∫ 1

t

N∑
k=1

〈Dφv
t,u(xk(t))t(yk(u) − xk(u)), ht ◦ xk(t)〉Rndudt

(f)
= −

∫ 1

0

2
σ2

N∑
k=1

〈
∫ 1

t

Dφv
t,u(xk(t))t(yk(u) − xk(u))du, ht ◦ xk(t)〉Rndt

(g)
= −

∫ 1

0
〈 2
σ2

N∑
k=1

K
(
∫ 1
t Dφv

t,u(xk(t))t(yk(u)−xk(u))du)
xk(t) , ht〉V dt

where (e) follows from writing φv
0,t(xk) = xk(t) and transposing the terms in the

inner-product, (f) from rearranging the integral and the inner-product, (g) from
using the Green’s Kernel on V transferring the inner-product from R

n to space
V . Collecting the terms we get

∂hE(v) =
∫ 1

0

〈
2vt − 2

σ2

N∑
k=1

K
(
∫ 1

t
Dφv

t,u(xk(t))t(yk(u)−xk(u))du)
xk(t) , ht

〉
(8)

and since the perturbation h ∈ L2([0, 1], V ) is arbitrary, we get equation 6.

Corollary 1 (Static Landmark Matching). For target landmarks y at only
one time-instant t = 1 i. e. y = y(1) = {yk}, the Euler-Lagrange equation
becomes:

(∇vE)t = 2vt − 2
σ2

N∑
k=1

K

(
Dφv

t,1(xk(t))t(yk−xk(1))

)
xk(t) = 0. (9)

3.1 Brief Implementation Note

We have implemented equation 9 and are currently working on implementing
equation 6. We provide here a few remarks on the implementation, the details
are given in [2]. The calculation for the optimal velocity vector field for landmark
matching proceeds via a gradient algorithm based on the Euler-Lagrange equa-
tion 9. The flow interval [0, T ], where T = 1 by default but can be an positive
real number, is discretized into N intervals such that Nδ = T , δ being the size of
each timestep. The simulations begin with simulation-step 0 where the estimate
of velocity vector field is set to zero i. e. vtj

= 0,∀j ∈ [0, N − 1]. The gradient
at simulation step n is used to update the estimate of v for simulation n+ 1 as

vn+1
t = vn

t − ε∇vnEn
t . (10)

The discretized gradient at simulation step n for each discretized time index
along the flow j ∈ [0, N − 1] is given by:

∇vnEn
tj

= 2vn
tj

− 2
σ2

N∑
k=1

K

(
Dφv

tj,1(x
v
k(tj))t(yk−xv

k(1))

)
xk(tj)

(11)
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Computation of the gradient requires the calculation of the Jacobian matrices
Dφv

t,1(xk(t))t which can be done by backward integration of the flow as these
satisfy

d

dt
Dφv

t,1(xk(t)) = −Dφv
t,1(xk(t))Dvt(xk(t)) (12)

with starting at t = 1 where Dφv
1,1(xk(1)) = In×n. Given the velocity field v, this

is an ordinary differential equation in Dφv
t,1 which can be solved using standard

methods for reverse time integration.

4 Results

In the experiments presented, the Green’s Kernel k(x, y) = exp(−‖x− y‖2/2σ2)
was used with σ = 0.1. This parameter controls the smoothing of the computed
transformation, where larger values of σ give transformations of greater smooth-
ness. The confidence or error in landmark placement is modelled by the land-
mark placement noise standard deviation σ in the second term of the energy
1

σ2

∑N
k=1 ‖yk − φ0,1(xk)‖2

Rn and two values of this parameter σ = 0.5 and 1.0
were used. Smaller values of this parameter put a higher penalty to the mis-
match of the final position of template landmarks from the corresponding target
landmarks and therefore tend towards making the matching exact. Flow was
discretized into 20 intervals of size 0.1 each.

The first experiment estimates the diffeomorphism matching the template
landmarks at points (16,26) and (48,36) to the corresponding target landmarks
at points (48,26) and (16,36) in a grid of size 64 by 64 pixels. In the second
experiment, 30 landmarks each from two macaque cortex cryosection images of
size 80 by 80 pixels were used.

The determinant of the Jacobian of the estimated mapping for the two values
of landmark placement noise standard deviation are summarized in the table
below.

Det. of Jacobian
Experiment(Grid Size) σ = 0.5 σ = 1.0

min max min max
Expt. 1(64 by 64) 0.1 7.35 0.13 6.34
Expt. 2(80 by 80) 0.33 2.4 0.54 1.77

Visual inspection shows the estimate mappings are smooth and even though
the deformtion in the first experiment is severe, the transformation estimated is
one to one. Execution times of the algorithm for both of these experiments was
of the order of a few seconds.

5 Discussion and Conclusion

The main contribution of this work is two-fold. First, we present the Euler-
Lagrange equation to interpolate between a sequence of landmarked datasets.
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Fig. 1. The top row shows the diffeomorphism calculated for matching a simple test
landmark dataset defined on domain of size 64 by 64 pixels. The bottom row shows the
matching of two landmark datasets derived from placing landmarks on two macaque
brain cryosection images of size 80 by 80 pixels. The circles are the template landmarks,
the stars are the target landmarks and the line emanating from the template landmark
is its trajectory to reach the corresponding target landmark. The matching experiments
were run for two values of landmark placement noise σ = 0.5 and σ = 1.0. The bottom
row shows the the Macaque cortex images I0 and I1 from which the landmarks in
middle row were obtained, and also shows these images transformed using the estimated
diffeomorphism the σ = 1 case.
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Second, as a special case, we get a new method for computing a dense diffeo-
morphic transformation for interpolating between a pair of landmark datasets.
The Euler-Lagrange equations are satisfied by the variational optimizer of the
inexact matching cost in space V of smooth vector fields. The gradient algorithm
obtained from the Euler-Lagrange equation is thus in the space of smooth vector
fields and therefore numerically stable and has nice convergence properties.

We present a challenging example of generating a diffeomorphic transforma-
tion for landmarks trajectories that criss-cross demonstrating the power of the
large deformations setting. As the landmark placement noise variance decreases,
the error in landmark matching decreases and this occurs at the expense of the
smoothness of the estimated mapping, which decreases correspondingly. We also
present the matching of landmark datasets derived from two Macaque cortex
images. The estimated transformation is used for the non-rigid registration of
these images where correspondance information is specified only via the sparse
landmarked image representation.
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