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Abstract. In this paper an automatic atlas-based segmentation algo-
rithm for 4D cardiac MR images is proposed. The algorithm is based on
the 4D extension of the expectation maximisation (EM) algorithm. The
EM algorithm uses a 4D probabilistic cardiac atlas to estimate the initial
model parameters and to integrate a-prior: information into the classifi-
cation process. The probabilistic cardiac atlas has been constructed from
the manual segmentations of 3D cardiac image sequences of 14 subjects.
It provides space and time-varying probability maps for the left and right
ventricle, the myocardium, and background structures such as the liver,
stomach, lungs and skin. In addition to the probabilistic cardiac atlas,
the segmentation algorithm incorporates spatial and temporal contex-
tual information by using 4D Markov Random Fields (MRF'). Validation
against manual segmentations and computation of the correlation be-
tween manual and automatic segmentation on 249 3D volumes were cal-
culated. Results show that the procedure can successfully segment the
left ventricle (LV) (r=0.95), myocardium (r=0.83) and right ventricle
(RV) (r=0.91).

1 Introduction

In Magnetic Resonance Imaging (MRI) of the cardiovascular system, an accu-
rate identification of the borders of the ventricles and myocardium is essential
to quantitatively analyse cardiac function such as ejection fraction or wall mo-
tion thickening. Segmentation of such images needs to be automated in order to
be clinically valuable and to avoid time-consuming and partly subjective man-
ual delineation. Segmentation of cardiac images is not trivial since the images
are noisy, the edges are blurred and they can have motion artifacts. Several
approaches have been proposed for the automatic segmentation of cardiac struc-
tures in MR images (for a review see [I]). Recently, a number of techniques which
are based on the use of a model or an atlas have been proposed [218J4]. In these
approaches a statistical model or atlas is used to incorporate a-priori informa-
tion which enables the use of both intensity and spatial information during the
segmentation process. In particular, several techniques based on active appear-
ance models (AAM) have emerged showing improved reliability and consistency
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[5]. However, the applicability is restricted to the MR imaging sequence used
for training since the intensity appearance and distribution is an explicit part of
the statistical model, i.e. an active appearance model trained on spin-echo MR
images is not necessarily useful for the segmentation of TrueFISP MR images of
the heart. Most of these techniques work only for 2D even though extensions to
3D have been recently proposed [0].

This paper proposes an approach which combines the expectation maximi-
sation (EM) algorithm [7] and a 4D probabilistic atlas of the heart for the
automatic segmentation of 4D cardiac MR images. Methods based on the EM
algorithm have been previously proposed for the classification of MR images of
the brain [RI9]. Others authors [I0JT1] have proposed to include contextual
information into the EM algorithm by means of Markov Random Fields (MRF).
In this work we use an extension of the EM algorithm to 4D (space and time) to
segment a complete 4D sequence of cardiac images. We show that introducing
contextual information in 4D into the EM algorithm significantly improves the
consistency of the segmentation process. We also use a 4D probabilistic cardiac
atlas to include spatially and temporally varying a-priori information into the
EM segmentation. The following section introduces the EM algorithm and the
probabilistic atlas. Section Bldescribes the automatic segmentation technique for
4D cardiac images. Section @ presents some results of the proposed segmenta-
tion approach applied to 4D cardiac MR images. Finally, section [ discusses the
results and proposes future research.

2 Methods

2.1 EM Algorithm

The EM algorithm [7] is an iterative procedure that estimates the maximum
likelihood for the observed data by maximising the likelihood for the estimated
complete data. The complete data comprises of the observed data and the miss-
ing data. The algorithm consists of two steps: The first one is the expectation
step, where the missing data are estimated by finding the maximum likelihood
parameter estimates for the observed data. The second step is the maximisa-
tion step, where the maximum likelihood for the observed data are estimated by
maximising the likelihood for the estimated complete data. In our case, the ob-
served data are the signal intensities of the MR image sequence, and the missing
data is the correct classification of the image sequence accomplished with help
of the parameters that describe the mean and variance of each class (anatomi-
cal structure), which are usually modelled by a Gaussian distribution. Figure [
shows an example of the different anatomical structures visible in a short-axis
MR image of the heart and the corresponding intensity distribution. Given a set
of K classes, the probability that class k has generated voxel value y; at position
i is given by the classification step:
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Fig. 1. A short-axis MR image of the heart showing sample regions of the blood pool
of the left ventricle (LV), right ventricle (RV), myocardium, and the corresponding
histogram of the intensity distribution of the image.
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where I € {k | k =1--- K} and ¢, = {pt, 0 }. Here py is the mean intensity
of class k and o7 is the variance of the intensities in class k. The estimation of
the parameters of each class is given by:
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The equations can be solved by iterating alternatingly between classification
(Eq. ) and parameter estimation (egs. 2l and [B]). In our implementation we
are considering four distinct classes corresponding to the left ventricle (LV),
myocardium, right ventricle (RV) and background.

2.2 Markov Random Fields

In order to improve the classification process and incorporate contextual infor-
mation, Leemput et al. [10] propose the use of MRFs where other constraints
are added taking into account the neighbouring voxels. They use a simple MRF
that is defined on a so-called first-order neighbourhood system, i.e., only the six
nearest neighbours on a 3D lattice are used: A = {i",4%,i%,i¢ i*,i’} denotes
the neighbourhood of voxel ¢ where ",4°,¢" and ¢ are its four neighbours in
short-axis direction, and i*,i® its two neighbours in the long-axis direction. In
addition, in our approach, we are also considering the voxels of the neighbouring
time frames of the sequence. Furthermore, we assume that the spatial interac-
tion between voxels and its neighbours is different in the temporal direction.
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For short-axis images with a typical slice thickness of 10mm, the contribution of
neighbours in the long-axis direction is not significant when the MRF parameters
are calculated, therefore we do not consider them in the calculation of the MRF
parameters. Following Leemput et al. we use the following Potts model to
represent the spatial and temporal interactions:

Upey(I' | 1) = Z I Ggi + I Hh; (4)
i=1

Here g; = I'jn + s + o + e is a vector that counts per class k& the number
of spatial neighbours of ¢ that belong to k. Similarly, h; = I';t—1 + I'jt++1 counts
per class k the number of neighbours in the temporal direction that belong
to k. G and H are K x K matrices that together form the MRF parameters
&r = {G, H}. Equations (2) and (B) remain the same but the classification step
is no longer given by () but by
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and ey is a binary vector with 1 at the kth component and 0 everywhere
clsel] The calculation of the MRF paramecters & = {G,H} can be solved
by using the least squares (LS) fit procedure described in [12]. The vec-
tor ¢ = [Gn"'GlK | Go1 -+ Gak | | Gki1-Gkk | Hyp--Hig |
Hoy -+ Hog |-+ | Hg1 - Hi )T denotes all parameters G and H and a vector
v gih: = [Lingl - Ligl | Tinhl -+ Iy h!]T where the following holds:
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The probability density function f(I5,g;,h; | r) can be estimated using
histogram techniques.

(7)
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2.3 Construction of a Probabilistic Atlas of the Heart

The cardiac atlas has been constructed from 14 subjects and has three different
components: The first component consists of spatially and temporally varying
4D probabilistic maps of four distinct anatomical structures of the heart (LV,

I The I’s are K-dimensional vectors such that I'; = ey, for some k.
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Fig. 2. Temporal registration and resampling [13]: Linear interpolation is used to gen-
erate time frames from image sequence 2 which correspond to those of sequence 1.

myocardium, RV and background). These probability maps encode prior knowl-
edge about the cardiac anatomy and its natural spatial and temporal variability.
The second component represents a 4D atlas of different background structures
corresponding to the liver, the stomach, the left lung and the skin. The final
component of the cardiac atlas corresponds to a template created by averaging
the MR image sequences of all subjects used to create the atlas.

Probabilistic Maps: The purpose of the probabilistic maps is to automate the
estimation of the initial parameters (mean and variance) for each class (struc-
ture) and to provide spatially and temporally varying a-priori information about
the likelihood of different anatomical structures. For this purpose the 4D MR
image sequences of 14 subjects were manually segmented. The image sequences
were then resampled using shape-based interpolation [14] in order to obtain a
set of images with isotropic resolution. One of the 14 subjects was randomly
chosen as the reference subject and all other subjects have been aligned to this
using an affine registration algorithm [I5]. This spatial alignment corrects for
differences due to position, size and orientation of the anatomy. In addition, we
have performed a temporal alignment by matching the end-systolic and diastolic
time frames of all subjects (Figure 2] using the automated algorithm described
in [I3]. The probabilistic maps have been calculated by blurring the segmented
image corresponding to each structure with a Gaussian kernel of ¢ = 8mm and
subsequent averaging. The final 4D probabilistic atlas consists of 20 time frames,
and each time frame consists of a volume of 256 x 256 x 100 voxels. An example
of the probability maps for background, left and right ventricle and myocardium
at end diastole is shown in Figure[3. The framework for the construction of the
probabilistic atlas is illustrated in Figure[dl.

Background Map: In addition to the probabilistic maps representing the
structures of interest, the background was divided into 4 subclasses correspond-
ing to the liver, the stomach, the left lung and the skin as shown in Figure [H(a).
For this purpose the background structures of the reference subject were man-
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ually segmented and resampled using shape-based interpolation. This 4D back-
ground map was used to estimate the model parameters (mean and variance)
of the different structures in the background. The reason why this background
map is needed is that the background contains various organs and modelling it
using a single Gaussian would not be sufficient since it contains a wide range
of intensities. These regions were considered as subclasses since they were only
used to estimate the parameters of the background. They were not used for the
MRF calculation or for the probabilistic atlas since they were not structures of
interest in the segmentation.

Template: In addition, we have also constructed a 3D template of the heart
during end diastole. This 3D template (Figure H(b)) has been calculated by
normalising and averaging the intensities of all end-diastolic images, after spatial
alignment to the reference image (Figure[H(c)). The purpose of this 3D template
is to allow us to align the cardiac atlas with the images to be segmented.

3 Automatic Segmentation

In the first step of the automatic segmentation the 3D template was registered
to the end-diastolic time frame of the MR sequence by using an affine registra-
tion. This produces a transformation which spatially aligns the 4D probabilistic
atlas to the MR image sequence. A temporal alignment was performed as de-
scribed in Figure @l Subsequently, a mask was generated for each class (LV,
RV, myocardium and background) in the probabilistic atlas by using only those
areas that had a probability higher than 50% of belonging to that class. For
the background each subclass was used as a mask. Since the atlas was already
aligned with the MR image, each of these masks was used to calculate the initial
model parameters (mean and variance) of each class and subclass. Having the
initial model parameters allows us to perform the first classification of the image
sequence by assigning the class with the highest probability for a voxel at po-
sition 7. The background had four probabilities corresponding to each subclass

e O

(a) (b) (c) (d)

Fig. 3. A probabilistic atlas of the heart constructed from 14 subjects: (a), (b), (c¢) and
(d) correspond to probability maps for background, LV, myocardium and RV, shown
at end diastole (note that the atlas is 4D, i.e. the probability maps change over time).
Dark areas indicate low probability, bright areas indicate high probability.
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Fig. 4. Construction of the probabilistic atlas.

and only the highest was considered as the probability of the background of
that specific voxel. In summary, the EM algorithm interleaves four steps: clas-
sification of the voxels with the initial parameters (Eq. [), estimation of the
Gaussian parameters (eqs. Bland [), estimation of the MRF parameters (Eq. [)
and classification using all the parameters (Eq. [Hl). It is important to note that
the probabilistic atlas constrains the classification since it provides a spatially
and temporally varying prior probability for each tissue class k. Classification
using the EM algorithm was repeated until the values of the parameters did not
change significantly. All the parameters (mean, variance and MRF model) were
re-estimated at each iteration.

@ () (©)

Fig.5. Image (a) shows the subclasses of the background, image (b) is the template
used to align the atlas with the 4D MR images and (c) is the image used as the
reference.
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Fig. 6. Comparison of the volumes of 249 3D images obtained by manual and automatic
segmentation considering neighbours in the short-axis direction only and using the
probabilistic atlas.

4 Results

Cardiac short-axis images were acquired at Royal Brompton Hospital, London,
UK, from 12 healthy volunteers using a Siemens Sonata 1.5T scanner with a
TrueFisp sequence and 256 x 256 x 10 voxels. Similarly, two more image se-
quences were acquired at Guy’s Hospital, London, UK using a Philips Gyroscan
Intera 1.5T scanner. Each image sequence consisted of 10 to 26 time frames,
involving a total of 249 volumetric datasets. The field of view ranged between
300-350 mm, the thickness of slices was 10mm and the total acquisition time was
approximately 15 minutes. In order to avoid bias, we used the ’leave one out’
test where the image set to be segmented was not used in the construction of its
corresponding atlas. The results of the automatic segmentation were compared
against those obtained by manually segmenting the 14 4D image sequences. In
order to assess the performance of the automatic segmentation the volumes of
the ventricles and myocardium were calculated and linear regression analysis
was used to compare the manually and the automatically segmented images.
Figure [l shows the results for the automatic segmentation when considering
only the neighbouring voxels in the short-axis directions. The correlation for the
LV, myocardium and RV is r = 0.94, r = 0.77 and r = 0.84, respectively. Figure
[7] presents the results of the automatic segmentation including also the neigh-
bouring voxels in the temporal direction where an improvement is noticeable,
especially in the myocardium (r = 0.83) and RV (r = 0.91). The results for the
LV are largely unchanged (r = 0.95). An example of segmentation is shown if
Fig Bl The automatic segmentation for a complete sequence of 26 frames took
25 minutes with an average of 20 iterations for the EM algorithm to converge
on a PC platform with a 2 Ghz processor.

5 Discussion and Future Work

We have presented a method for the automatic segmentation of 4D cardiac MR
images. We have demonstrated that the combination of the EM algorithm and
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Fig. 7. Comparison of the volumes of 249 3D images obtained by manual and automatic
segmentation considering neighbours in the spatial and temporal directions and using
the probabilistic atlas.

Fig. 8. Example of typical segmentation results overlaid on 2D and 3D images.

a probabilistic atlas yields an accurate and fast segmentation of a complete car-
diac sequence. Using a probabilistic atlas as a spatially and temporally varying
prior was essential for segmenting structures with a similar range of intensities
such as the LV and RV or the myocardium and some structures in the back-
ground. Since the probabilistic maps represent a 4D atlas, a good segmentation
was obtained for the entire sequence despite the considerable change in the size
of the structures during the cardiac cycle. Also, using the spatio-temporal MRF
approach for the EM algorithm improved the results significantly compared to
spatial MRFs only. Our approach is completely automatic and consistent since
the alignment of the atlas is performed automatically by an affine registration al-
gorithm. In addition, it is independent of the image intensities in the MR images
and can be applied to images acquired with other sequences (e.g. black-blood
studies) since the estimation of the parameters is performed using the atlas. The
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major limitation is that there could be misclassified voxels at the boundaries of
the classes and that those can be slightly overestimated, especially when ves-
sels are very close to the ventricles or when the contrast between myocardium
and surrounding tissues is very low. This can also happen when the difference
between neighbouring time frames is too big. Future work will include other
cardiac structures such as the left and right atria and some of the main arteries
and vessels to prevent them from being classified as part of the ventricles.
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