
Cryptanalysis of Block Ciphers
Based on SHA-1 and MD5�

Markku-Juhani O. Saarinen

Helsinki University of Technology
Laboratory for Theoretical Computer Science

P.O. Box 5400, FIN-02015 HUT, Finland
mjos@tcs.hut.fi

Abstract. We cryptanalyse some block cipher proposals that are based
on dedicated hash functions SHA-1 and MD5. We discuss a related-key
attack against SHACAL-1 and present a method for finding “slid pairs”
for it. We also present simple attacks against MDC-MD5 and the Kaliski-
Robshaw block cipher.

Keywords: SHA-1, SHACAL, MD5, MDC, Slide attacks, Dedicated
hash functions.

1 Introduction

One of the most widely used ways of creating cryptographic hash functions is
the so-called Davies-Meyer mode. Let Y = E(M, X) be a compression function
that takes in a message block M with an input variable X and produces a
partial digest Y of equal size to X. To compute a message digest of message
M1 | M2 | · · · | Mn, we simply set X0 to some predefined initialization vector and
iterate for i = 1, 2, . . . , n:

Xi = E(Xi−1, Mi) ⊕ Xi−1

The resulting message digest is Xn. See [7, 14, 16, 17] for further discussion of
hash function modes of operation. Notably, in 2002 Black, Rogaway, and Shrimp-
ton proved that this mode is secure if E is secure [3].

It has been observed that the compression functions of most widely-used
dedicated hash functions MD5 [18] and SHA [19, 20] are in fact based on this
construction. In these hash functions the exclusive-or operation has been re-
placed by wordwise addition modulo 232 of the chaining variables. It has also
been observed that the compression function E of MD5 and SHA can be effi-
ciently computed in both directions; given Y = E(X, M) and M , the original
chaining value X can be recovered using an inverse transform X = E−1(Y, M).
However, it is believed to be more difficult to recover Xi−1, given Xi and M .

� This work has been supported by the Finnish Defence Forces.

T. Johansson (Ed.): FSE 2003, LNCS 2887, pp. 36–44, 2003.
c© International Association for Cryptologic Research 2003

Cryptanalysis of Block Ciphers Based on SHA-1 and MD5 37

2 The SHACAL Block Ciphers

One of the proposals for the NESSIE project was the block cipher SHACAL,
which is essentially the SHA-1 compression function with the Davies-Meyer
chaining peeled off [11]. In this proposal the message block M is viewed as the
“key”, the chaining variable X acts as the plaintext block and Y = E(X, M) is
the corresponding ciphertext block.

Later, a “tweak” was submitted where the original SHACAL was renamed
SHACAL-1 and a new block cipher SHACAL-2 (based on SHA-256) was also
proposed [12]. We refer the reader to [11, 12, 20] for detailed specifications of
the SHACAL block ciphers. The basic structure is also used as a part of the
HORNET stream cipher [15].

A detailed analysis of differential and linear properties of SHA-1 in encryption
mode can be found in [10], where it is conjectured that a linear cryptanalytic
attack would require at least 280 known plaintexts and a differential attack would
require at least 2116 chosen plaintexts.

2.1 Sliding SHA-1 and SHACAL

Slide attacks against block ciphers were introduced by Biryukov and Wagner in
1999 [4, 5], although similar techniques had previously been used by others.

To our knowledge, slide attacks against hash functions have not been previ-
ously considered in the literature. Indeed it is difficult to see if and how “slid
pairs” in the compression function can be exploited to find collisions for the hash
function. This remains an open question.

However, it is interesting to consider the question whether or not slid pairs
(which are essentially linear relations between two inputs and outputs) can be
easily found for SHA-1. This is also related to Anderson’s classification of hash
functions [1]. David Wagner has considered a slide attack on 40 iterations of
SHA-1 in unpublished work [21].

SHA-1 exhibits some properties which are useful when mounting slide at-
tacks.

a) The SHA-1 compression function consists of four different “rounds”. For 20
iterations of each round the nonlinear function Fi and the constant Ki are
unchanged. There are only three transitions between different iteration types
(see Figure 1).

b) The key schedule (i.e. message expansion) can be slid. We simply choose
W ′

i = Wi+1 for 0 ≤ i ≤ 14 and W ′
15 = (W1 ⊕ W7 ⊕ W12 ⊕ W15) ≪ 1. It is

easy to see that after the key expansion W ′
i = Wi+1 for 0 ≤ x ≤ 78.

We note that these properties are not exhibited by SHA-256 (or SHA-512),
thus making SHACAL-2 more resistant to slide attacks.

2.2 Related-Key Attacks

We shall consider the difficulty of distinguishing related keys. We assume that we
are given chosen-plaintext access to two SHACAL-1 encryption oracles (“black

38 Markku-Juhani O. Saarinen

boxes”) whose keys are related in the way described in the previous section. The
main question becomes how many chosen plaintexts are needed.

For the transition iterations between different types of functions we wish
to find inputs that produce the same output word for both types (“round colli-
sions”). Experiments have confirmed that the round functions behave sufficiently
randomly for us to use 2−32 as the probability of a round collision. Since there are
three transitions, a simple distinguisher will require approximately 2128 chosen
plaintext pairs.

As pointed out by an anonymous program committee member, this can be im-
proved to 296 by using “structures”; first perform 232 encryptions of (A, B, C, D,
x) on the first oracle, where x = 0, 1, 2, · · · , 232 − 1 and A, B, C, D are some
constants. Then do another 232 encryptions of (y, A, B ≫ 2, C, D) on the sec-
ond “slid” oracle for y = 0, 1, 2, · · · , 232 − 1. Since each entry in the first set
corresponds to some slid entry in the second set, the first collision is effectively
obtained for free, and only 296 pairs are required to distinguish the related keys.

A version of SHACAL-1 reduced to three rounds (60 iterations) will require
264 pairs (only two transitions).

2.3 An Algorithm for Finding Slid Pairs

A method exists for finding slid pairs with roughly 232 effort. The method is
rather technical, so we can only give an overview of the key ideas used.

The general strategy is as follows. The algorithm doesn’t start by choosing
the plaintext or the ciphertext, but from the “middle”, iterations 20 and 40.
We find collisions in these positions with O(1) effort and then work towards
iterations 25 – 28, where we perform a partial meet-in-the middle match.

Round Collisions. We note that in iteration i, not all input words affect the
possibility of a round collision; only B, C, and D are relevant, since A and E
only affect the output word linearily. Furthermore, the key word Wi has no effect
to the probability of collision in iterations i or i + 1.

For iteration pair 19/20 (select-parity transition) we use 1:

(B, C, D) = (�K20,�K0,�K0)

It is easy to see that

(B ∧ C) ∨ (¬B ∧ D) = �K0

B ⊕ C ⊕ D = �K20

Thus the constant (K0/K20) is canceled out in both cases and a round collision
occurs.
1 We use the boxed plus and minus symbols � and � to denote twos complement

addition and subtraction operations mod 232. �x can be read as 0�x. Other symbols
denote are word-wise binary operators as follows: ¬ not, ∧ and, ∨ or, and ⊕ exclusive-
or.

Cryptanalysis of Block Ciphers Based on SHA-1 and MD5 39

40 Markku-Juhani O. Saarinen

Similarly, for iteration pair 39/40 (parity-majority transition) we use:

(B, C, D) = (�K20,�K40,�K40)

Again we see that a collision occurs:

B ⊕ C ⊕ D = �K20

(B ∧ C) ∨ (C ∧ D) ∨ (B ∧ D) = �K40.

Keying. The key-expansion LFSR is sparse. This helps us to stretch the 16-
word span of the key schedule window to cover two collisions at iterations 20
and 40.

We note that all 80 key words can be easily computed from any 16 consecutive
words of the expanded key. In our attack we choose keys W21...36. We start by
forcing a collision at iteration 20 and then running the cipher forward to iteration
25.

We then pick (A, B, C, D, E) after iteration 38 so that a collision occurs
at iteration 40, and then run the cipher backwards to iteration 28. Key words
W21 . . . W24 and W29 . . . W36 are set to zero. Therefore

W37 = (W33 ⊕ W29 ⊕ W23 ⊕ W21) ≪ 1 = 0
W38 = (W34 ⊕ W30 ⊕ W24 ⊕ W22) ≪ 1 = 0.

Note that W39 and W40 do not affect collision at iteration 40.
We can choose four keying words W25...28 without messing up the two round

collisions! Unfortunately we cannot control all five words so we are forced to use
a large lookup table to find a match the fifth word of the running state. This
works because SHA-1 requires five iterations before all words are non-linearly
changed.

After we have collisions in iterations 20 and 40, and sixteen keying words
W21...36, we simply run the compression function forward to iteration 59/60 and
see if a collision occurs there also. Since two of the three necessary collisions can
be found with essentially O(1) effort and the third requires O(232) operations,
the overall complexity of finding slid pairs is O(232). The method has been
implemented; see the Appendix for an example of a slid pair for full SHACAL-1.

This is a surprising property, but we are have not discovered a direct way to
transform it into a practical attack against SHA-1 and SHACAL.

3 Block Ciphers Based on MD5

We may also consider block ciphers derived from other dedicated hash functions.
One obvious candidate is MD5 [18]. The MD5 compression function consists of
four “rounds”, each of which has 16 iterations. Because each of the 64 itera-
tions has a different constant, the MD5 compression function doesn’t seem to be
subject to sliding attacks. Figure 2 shows the structure of a single MD5 iteration.

Cryptanalysis of Block Ciphers Based on SHA-1 and MD5 41

� � � �

� �

��

����

	�
�
�

�� ����

Fig. 2. The MD5 iteration.

The MD5 compression function is known to not be collision-resistant [8].
This indicates the existence of “fixed points” in the corresponding block cipher
but doesn’t really tell us much its security. Some differential cryptanalysis of the
hashing mode has been attempted, but we are not aware of any cryptanalysis of
MD5 in encryption mode [2]. However, there exists at least one high-probability
differential characteristic:

P ⊕ P ′ = 80000000 80000000 80000000 80000000

↓
E(P, K) ⊕ E(P ′, K) = 80000000 80000000 80000000 80000000

With probability 2−16 this characteristic will penetrate 16 iterations of
rounds 1, 2, and 4. The characteristic holds with P = 1 for round 3, yielding a
total product probability of 2−48. Note that if the chaining variable is added, the
output xor becomes zero. This attack is closely related to the collision attacks
discussed in [6].

3.1 Message Digest Cipher

The Message Digest Cipher (MDC) encryption mode for iterated hash functions
was proposed by Gutmann in 1993 and is used in his Secure FileSystem software
(in conjunction with the SHA-1 compression function) [9]. MDC can be defined
as

C0 = IV

Ci = Pi ⊕ (E(Ci−1, K) � Ci−1) for i = 1, 2, . . . , n.

Here the boxed plus symbol (�) denotes wordwise addition modulo 232, IV is an
initialization vector, Pi are the plaintext blocks, and Ci are the corresponding
ciphertext blocks. If we ignore the addition operation, MDC is equivalent to
running the compression function in CFB (cipher feedback) mode.

42 Markku-Juhani O. Saarinen

The decryption operation can be written as:

Pi = Ci ⊕ (E(Ci−1, K) � Ci−1)

This allows us to select the input to the compression function. Using the differ-
ential characteristic described in the previous section, we can distinguish MDC-
MD5 from a “perfect” 128-bit block cipher in CFB mode with about 248 blocks
(255 bits) in a chosen ciphertext attack. Computational cost of key recovery
can be substantially reduced using this, and other, differential properties of the
MD5 compression function. Such attacks depend on the details of key scheduling
mechanism used.

3.2 The Kaliski-Robshaw Cipher

Another proposal based on MD5 is the Kaliski-Robshaw cipher [13]. The main
purpose of the proposal apparently was to activate discussion of very large block
ciphers. However, the paper gave enough details about this proposal for us to
mount a cryptanalytic attack. This cipher has 8192-bit blocksize and its basic
iteration is closely related to that of MD5. However, the overall structure is
radically different.

It turns out that flipping bit 26 (0x04000000) of one of the 256 plaintext
words will result in equivalence of at least 64 ciphertext words with experimental
probability 0.096 = 2−3.4. This is due to the fact that this particular bit often
only affects three words in first round. In each of the consequent rounds the
number of affected words only can only quadruple, resulting 3 ∗ 4 ∗ 4 ∗ 4 = 192
affected words in the end, and leaving 64 words untouched.

This immediately leads to a distinguisher requiring no more than dozen cho-
sen plaintext blocks. Analysis of key recovery attacks is made a little bit more
difficult by the sketchy nature of the description of key schedule. If we assume
that the key can be effectively recovered from permutation P, we believe that a
key recovery attack will not require more than 216 chosen plaintext blocks and
neglible computational effort.

4 Conclusions

We have presented attacks against block ciphers that have been directly derived
from dedicated hash functions. Section 2 discusses slide attacks against SHA-1
and SHACAL-1 and section 3 describes simple attacks against MDC-MD5 and
the Kaliski-Robshaw cipher.

Compression functions are meant to be only ran in one direction. The security
properties of compression functions can be different when ran in the opposite
direction (“decryption”). Furthermore a key-scheduling mechanism suitable for
a dedicated hash function may be insufficient for a block cipher.

Based on evidence in hand, we assert that since the design criteria of com-
pression functions and block ciphers are radically different, adaptation of even
a secure compression function as a block cipher is often not a wise thing to do.

Cryptanalysis of Block Ciphers Based on SHA-1 and MD5 43

Acknowledgements

The author would wish to thank Kaisa Nyberg, Helger Lipmaa, Matt Robshaw,
and several anonymous reviewers for useful comments.

References

1. R. Anderson. The Classification of Hash Functions. Proc. Codes and Cyphers:
Cryptography and Coding IV, Institute of Mathematics & Its Applications, pp. 83
– 93. 1995.

2. T. A. Berson. Differential Cryptanalysis Mod 232 with Applications to MD5. Ad-
vances in Cryptology – Proc. Eurocrypt ’92, LNCS 0658. pp. 71 – 80. Springer-
Verlag, 1993.

3. J. Black, P. Rogaway, and T. Shrimpton Black-Box Analysis of the Block-Cipher-
Based Hash-Function Constructions from PGV Advances in Cryptology – Proc.
Crypto ’02. LNCS 2442, pp. 320 – 335. Springer-Verlag, 2002.

4. A. Biryukov and D. Wagner. Slide attacks Proc. Fast Software Encryption ’99,
LNCS 1636. pp. 245 – 259. Springer-Verlag, 1999.

5. A. Biryukov and D. Wagner. Advanced Slide Attacks. Advances in Cryptology –
Proc. Eurocrypt ’00, LNCS 1807. pp. 589 – 606. Springer-Verlag, 2000.

6. B. den Boer and A. Bosselaers. Collisions for the compression function of MD5.
Advances in Cryptology – Proc. Eurocrypt ’93, LNCS 0765. pp. 293 – 304. Springer-
Verlag, 1994.

7. I. Damg̊ard. A Design Principle for Hash Functions. Advances in Cryptology –
Proc. Crypto ’89, LNCS 0435. pp. 399 – 416. Springer-Verlag, 1990.

8. H. Dobbertin. Cryptanalysis of MD5 Compress. Presented at Eurocrypt ’96 rump
session, May 14, 1996.

9. P. C. Gutmann. SFS Version 1.0 Documentation. Available form
http://http://www.cs.auckland.ac.nz/˜pgut001/sfs/

10. H. Handschuh, L. R. Knudsen, and D. Naccache. Analysis of SHA-1 in Encryption
Mode. Proc. RSA Cryptographers’ Track 2001, LNCS 2020. pp. 70 – 83. Springer-
Verlag, 2001.

11. H. Handschuh and D. Naccache. SHACAL. Submission to the NESSIE project,
2000. Available from http://www.cryptonessie.org.

12. H. Handschuh and D. Naccache. SHACAL: A Family of Block Ciphers. Submission
to the NESSIE project, 2002. Available from http://www.cryptonessie.org.

13. B. S. Kaliski and M. J. B. Robshaw. Fast Block Cipher Proposal. Proc. Fast Soft-
ware Encryption 1993, LNCS 0809. pp. 33 – 40. Springer-Verlag, 1994.

14. Ralph Merkle. One Way Hash Functions and DES. Advances in Cryptology – Proc.
Crypto ’89, LNCS 0435. pp. 428 – 446. Springer-Verlag, 1990.

15. R. K. Nichols and P. C. Lekkas. Wireless Security – Models, Threats, and Solutions.
McGraw-Hill, 2002.

16. B. Preneel, R. Govaerts, and J. Vandewalle. Hash Functions Based on Block Ci-
phers: A Synthetic Approach. Proc Crypto ’93. LNCS 0773, pp. 368 – 378. Springer-
Verlag, 1993.

17. B. Preneel. Cryptographic Primitives for Information Authentication – State of the
Art. State of the Art in Applied Cryptography. Course on Computer Security and
Industrial Cryptography, Leuven, Belgium, June 1997. Revised Lectures. LNCS
1528, pp. 49 – 130. Springer-Verlag, 1998.

44 Markku-Juhani O. Saarinen

18. R. Rivest. The MD5 Message-Digest Algorithm Network Working Group RFC
1321, 1992.

19. U.S. Department of Commerce. FIPS PUB 180-1: Secure Hash Standard. Federal
Information Processing Standards Publication, April 1995.

20. U.S. Department of Commerce. FIPS PUB 180-2: Secure Hash Standard, Draft
Federal Information Processing Standards Publication, 2001.

21. D. Wagner. A Slide Attack on SHA-1. Unpublished manuscript and personal com-
munication. June 4, 2001.

A A Slid Pair for SHA-1

The algorithm for finding slid pairs was implemented in the C programming
language (588 lines). Test run required roughly 2 hours of CPU time on a 1 GHz
Pentium III computer (GCC/Linux).

Triplet A.

(A, B, C, D, E) = 02AAD5C2 DC766713 19C66B2F 7CEAE5B1 CC08CC0B

W0...15 = 8DA3F8F6 BBA5050C 99D3C3DC BBA5050C 99D3C3DC

E42BAFB3 37DF640F 1ABABEEA 8DA3F8F6 E42BAFB3

37DF640F B57DEBB5 5AA5AB1F 44ED8DA0 1B63271F

EAE12A73

(A′, B′, C ′, D′, E′) = FC56BE44 03A42CDA F68056F0 960F5286 32985CD9

Triplet B.

(A, B, C, D, E) = 4258DA7D 02AAD5C2 F71D99C4 19C66B2F 7CEAE5B1

W0...15 = BBA5050C 99D3C3DC BBA5050C 99D3C3DC E42BAFB3

37DF640F 1ABABEEA 8DA3F8F6 E42BAFB3 37DF640F

B57DEBB5 5AA5AB1F 44ED8DA0 1B63271F EAE12A73

BA7C9CF9

(A′, B′, C ′, D′, E′) = 58BB28F0 FC56BE44 C0E90B35 F68056F0 960F5286

It is easy to see that Triplet B has been slid “right” by one position compared
to Triplet A. The message block has been slid “left” correspondingly.

Output arrays (A′, B′, C ′, D′, E′) include the final addition of chaining vari-
able. If this final “chaining” is removed, this is also a slid pair for SHACAL-1.

	1 Introduction
	2 The SHACAL Block Ciphers
	2.1 Sliding SHA-1 and SHACAL
	2.2 Related-Key Attacks
	2.3 An Algorithm for Finding Slid Pairs

	3 Block Ciphers Based on MD5
	3.1 Message Digest Cipher
	3.2 The Kaliski-Robshaw Cipher

	4 Conclusions
	References
	Appendix
	A A Slid Pair for SHA-1

