
D. Fensel et al. (Eds.): ISWC 2003, LNCS 2870, pp. 306–318, 2003.
© Springer-Verlag Berlin Heidelberg 2003

IRS–II: A Framework and Infrastructure for Semantic
Web Services

Enrico Motta1, John Domingue1, Liliana Cabral1, and Mauro Gaspari2

1 Knowledge Media Institute, The Open University, Milton Keynes, UK
{E.Motta,J.B.Domingue,L.S.Cabral}@open.ac.uk

2 Dipartimento di Scienze dell’Informazione, University of Bologna, Italy
gaspari@cs.unibo.it

Abstract. In this paper we describe IRS–II (Internet Reasoning Service) a
framework and implemented infrastructure, whose main goal is to support the
publication, location, composition and execution of heterogeneous web
services, augmented with semantic descriptions of their functionalities. IRS–II
has three main classes of features which distinguish it from other work on
semantic web services. Firstly, it supports one-click publishing of standalone
software: IRS–II automatically creates the appropriate wrappers, given pointers
to the standalone code. Secondly, it explicitly distinguishes between tasks (what
to do) and methods (how to achieve tasks) and as a result supports capability-
driven service invocation; flexible mappings between services and problem
specifications; and dynamic, knowledge-based service selection. Finally, IRS–II
services are web service compatible – standard web services can be trivially
published through the IRS–II and any IRS–II service automatically appears as a
standard web service to other web service infrastructures. In the paper we
illustrate the main functionalities of IRS–II through a scenario involving a
distributed application in the healthcare domain.

1 Introduction

Web services promise to turn the web of static documents into a vast library of
interoperable running computer programs and as such have attracted considerable
interest, both from industry and academia. For example, IDC [8] predicts that the
Web Services market, valued at $416 million in 2002, will be worth $2.9 billion by
2006.

Existing web service technologies are based on a manual approach to their
creation, maintenance and management. At the centre of the conceptual architecture is
a registry which stores descriptions of published web services. Clients query the
registry to obtain relevant details and then interact directly with the deployed service.
The descriptions, represented in XML based description languages, such as WSDL
[17] and UDDI [16], mostly focus on the specification of the input and output data
types and the access details. These specifications are obviously not powerful enough
to support automatic discovery, mediation and composition of web services. A
software agent cannot find out what a web service actually does, by reasoning about a
WSDL specification. Analogously the same agent cannot locate the appropriate

IRS–II: A Framework and Infrastructure for Semantic Web Services 307

service in a UDDI registry, given the specification of a target functionality. As a
result, existing web service infrastructures by and large support a manual approach to
web service management: only manual discovery is supported and only ‘static’,
manually configured web applications are possible.

The above issues are being addressed by ongoing work in the area of semantic web
services [3, 5, 14]. The basic idea here is that by augmenting web services with rich
formal descriptions of their competence many aspects of their management will
become automatic. Specifically, web service location, composition and mediation can
become dynamic, with software agents able to reason about the functionalities
provided by different web services, able to locate the best ones for solving a particular
problem and able to automatically compose the relevant web services to build
applications dynamically. Research in the area is relatively new and although a
number of approaches have been proposed, such as DAML-S [3] and WSMF [5], no
comprehensive tool infrastructures exist, which support the specification and use of
semantic web services.

In this paper we describe IRS–II (Internet Reasoning Service) a framework and
implemented infrastructure which supports the publication, location, composition and
execution of heterogeneous web services, augmented with semantic descriptions of
their functionalities. IRS–II has three main classes of features which distinguish it
from other work on semantic web services.

Firstly, it supports one-click publishing of ‘standard’ programming code. In other
words, it automatically transforms programming code (currently we support Java and
Lisp environments) into a web service, by automatically creating the appropriate
wrappers. Hence, it is very easy to make existing standalone software available on the
net, as web services.

Secondly, the IRS–II builds on knowledge modeling research on reusable
components for knowledge-based systems [2, 6, 9, 10], and as a result, its architecture
explicitly separates task specifications (the problems which need to be solved), from
the method specifications (ways to solve problems), from the domain models (where
these problems, which can be generic in nature, need to be solved). As a consequence,
IRS–II is able to support capability-driven service invocation (find me a service that
can solve problem X). Moreover, the clean distinction between tasks and methods
enables the specification of flexible mappings between services and problem
specifications, thus allowing a n:m mapping between problems and methods and a
dynamic, knowledge-based service selection.

Finally, IRS–II services are web service compatible – standard web services can be
trivially published through the IRS–II and any IRS–II service automatically appears
as a standard web service to other web service infrastructures.

The paper is organized as follows: in the following section we outline our overall
approach. We then describe the IRS–II framework in detail and illustrate its main
components through a scenario involving a distributed healthcare application. The
final section of the paper contains our conclusions.

2 The IRS–II Approach

Work on the IRS–II began in the context of the IBROW project [1], whose overall
goal was to support on-the-fly application development through the automatic

308 E. Motta et al.

configuration of reusable knowledge components, available from distributed libraries
on the Internet. These libraries are structured according to the UPML framework [6],
which is shown in figure 1. The UPML framework distinguishes between the
following classes of components:

• Domain models. These describe the domain of an application (e.g. vehicles, a
medical disease).

• Task models. These provide a generic description of the task to be solved,
specifying the input and output types, the goal to be achieved and applicable
preconditions. Tasks can be high-level generic descriptions of complex classes of
applications, such as Classification or Scheduling, as well as more ‘mundane’
problem specifications, such as Exchange Rate Conversion.

• Problem Solving Methods (PSMs). These provide abstract, implementation-
independent descriptions of reasoning processes which can be applied to solve
tasks in specific domains. As in the case of task models, these can be high-level,
generic PSMs such as Heuristic Classification [2] and Propose&Revise [9], or they
can be specialized methods applicable to fine-grained tasks, such as Exchange Rate
Conversion.

• Bridges. These specify mappings between the different model components within
an application. For example, the refinement process in heuristic classification may
be mapped onto a taxonomic hierarchy of attributes within some domain, in order
to construct a specific application.

Each class of component is specified by means of an appropriate ontology [7].
The main advantage of this framework from an epistemological point of view is

that it clearly separates the various components of knowledge-based applications, thus
providing a theoretical basis for analyzing knowledge-based reasoners and an
engineering basis for structuring libraries of reusable components, performing
knowledge acquisition, and carrying out application development by reuse [10].

Fig. 1. The UPML framework

The application of the UPML framework to semantic web services also provides a
number of advantages and in our view our framework compares favorably with
approaches such as DAML-S, where services are arranged in hierarchies and no
explicit notion of task is provided – tasks are defined as service-seeking agents. In

IRS–II: A Framework and Infrastructure for Semantic Web Services 309

DAML-S tasks are always application specific, no provision for task registries is
envisaged. In contrast in our approach, tasks provide the basic mechanism for
aggregating services and it is possible to specify service types (i.e., tasks),
independently of specific service providers. In principle this is also possible in
DAML-S. Here a task would be defined as a service class, say S, and its profile will
give the task definition. However, this solution implies that all instances of S will
inherit the task profile. This approach is not very flexible, given that it makes it
impossible to distinguish (and to reason about) the differences between the profile of
a task (service class) and the profile of a method (specific service provider) –
attributes are inherited down is-a hierarchies. In particular, in some cases, a method
may only solve a weaker form of a task, and it is therefore important for a brokering
agent to be able to reason about the task-method competence matching, to decide
whether it is OK to use the weaker method in the given scenario. For instance, in a
currency conversion scenario, a task specification may define currency conversion
rates in terms of the official FT quotes, but different service providers may adopt
other conversion rates. By explicitly distinguishing between tasks and methods we
provide a basic framework for representing these differences and for enabling
matchmaking agents [15] to reason about them.

The separation between tasks and methods also provides a basic model for dealing
with ontology mismatches. While in DAML-S subscribing to a Service Class implies
a strong ontological commitment (i.e., it means to define the new service as an
instance of the class), the UPML framework assumes that the mapping between
methods and tasks may be mediated by bridges. In practice this means that if task T is
specified in ontology A and a method M is specified in ontology B, which can be used
to solve T, it is still possible to use M to solve T, provided the appropriate bridge is
defined.

Finally, another advantage of our approach is that the task-method distinction also
enables capability-driven service invocation. While this is also possible in principle in
approaches such as DAML-S, as discussed above, our approach provides both an
explicit separation between service types and service providers and more flexibility in
the association between methods and tasks.

3 IRS–II Architecture

The overall architecture of the IRS–II is shown in figure 2. The main components are
the IRS Server, the IRS Publisher and the IRS Client, which communicate through a
SOAP-based protocol [13].

3.1 IRS Server

The IRS server holds descriptions of semantic web services at two different levels. A
knowledge level description is stored using the UPML framework of tasks, PSMs and
domain models. These are currently represented internally in OCML [10], an
Ontolingua-derived language which provides both the expressive power to express
task specifications and service competencies, as well as the operational support to
reason about these. Once rule and constraint languages are developed for OWL [12],

310 E. Motta et al.

we will provide the appropriate import/export mechanisms. In addition we have also
special-purpose mapping mechanisms to connect competence specifications to
specific web services. These correspond to the notion of grounding in DAML-S.

Fig. 2. The IRS–II architecture

3.2 Task Descriptions

An example task description, exchange_rate_provision, is shown in figure 3. As
can be seen in the figure the task has two input roles, a source_currency and a
target_currency, and one output role, the exchange_rate. The supporting
definitions, such as currency and positive_number, are defined in the task
ontology associated with this task, or in ontologies included by it.

(def-class exchange_rate_provision (goal-specification-task)
 ?task
 ((has-input-role :value has_source_currency
 :value has_target_currency)
 (has-output-role :value has_exchange_rate)
 (has_source_currency :type currency :cardinality 1)
 (has_target_currency :type currency :cardinality 1)
 (has_exchange_rate :type positive_number)
 (has-goal-expression
 :value (kappa (?psm ?sol)
 (= ?sol (the_official_exchange_rate
 (role-value ?psm has_source_currency)
 (role-value
 ?psm has_target_currency)))))))

Fig. 3. Definition of the exchange_rate_provision task

Web service mediation and composition are supported by task preconditions and
goal expressions. No precondition is specified for this task, although the
specifications of the input roles implicitly state that one (and no more than one)
source and target currency have to be specified. The goal expression states that the

IRS–II: A Framework and Infrastructure for Semantic Web Services 311

output for the task must be compliant with the “official exchange rate”, as specified in
the relevant ontology.

 (def-irs-soap-bindings
 exchange_rate_provision_ontology ;;ontology name
 exchange_rate_provision ;;task name
 ((has-source-currency "xsd:symbol") ;;source currency
 (has-target-currency "xsd:symbol")) ;;target currency
 "xsd:float") ;;output

Fig. 4. The soap-bindings for the exchange_rate_provision task

The integration of semantic specifications and web service descriptions is achieved
at the task level by means of SOAP bindings. A SOAP binding maps the input and
output roles onto SOAP types - the soap binding for the
exchange_rate_provision task is shown in figure 4. The binding specifies that
the input roles, source_currency and target_currency, are mapped to the
SOAP type xsd:symbol and the output role is mapped to the SOAP type
xsd:float. The relation between SOAP types and ontological input and output types
is analogous to the distinction between knowledge and symbol level in knowledge-
based systems [11]. The ontology specifies what knowledge is required and produced;
the SOAP types specify the way this knowledge is effectively encoded in the symbol-
level communication mechanism. Hence, any web service which solves a particular
task must comply with both knowledge and symbol level requirements, or
alternatively, bridges need to be defined to ensure interoperability.

3.3 Problem Solving Methods

The IRS server holds both the method descriptions (PSMs) and a registry of web
services, which implement them. An example PSM, which tackles the
exchange_rate_provision task, is shown in figure 5. We can see that the type of
the input roles has been constrained from currency to european_currency. Also
pre and post conditions have been introduced.

The precondition states that the bank must have available stock of the target
currency, whilst the post-condition states that the rate provided is the one supplied by
the European Central Bank (ECB). Hence, this particular service may or may not
‘solve’ the exchange provision task, depending on whether the exchange rate
provided by ECB is the same as the one required by the task, or whether the
matchmaking agent is happy to consider them as ‘close enough’. The explicit
distinction between tasks and PSMs makes it possible to precisely specify, by means
of ontologies, both the problems to be addressed and the different ways to address
them and provides a basis to matchmaking agents to reason about the method-to-to-
task mapping and to mediation services to try and ‘bridge the gap’ between service
requirements and service providers.

In a similar fashion to tasks, web service discovery is supported by the pre and post
conditions. For instance, the conditions formulated in the
MM_Bank_exchange_rate_provider PSM can be used to answer agent queries

312 E. Motta et al.

such as “which exchange rate services focus on European currencies” and “which
exchange rate services are able to change 250K pounds into euros?”.

(def-class MM_Bank_exchange_rate_provider (primitive-method)
 ?psm
 ((has-input-role
 :value has-source-currency
 :value has-target-currency)
 (has-output-role
 :value has-exchange-rate)
 (has-source-currency :type european_currency :cardinality 1)
 (has-target-currency :type european_currency :cardinality 1)
 (has-exchange-rate :type positive_number)
 (has-precondition
 :value (kappa (?psm) (stock-available
 (role-value ?psm has-target-currency))
 (has-postcondition
 :value (kappa (?psm ?sol)
 (= ?sol (the-European-Central-Bank-exchange-rate
 (role-value ?psm has-source-currency)
 (role-value ?psm has-target-currency)))))))

Fig. 5. A PSM which addresses the exchange_rate_provision task

3.4 IRS Publisher

The IRS Publisher plays two roles in the IRS–II framework. Firstly, it links web
services to their semantic descriptions within the IRS server. Note that it is possible to
have multiple services described by the same semantic specifications (i.e., multiple
implementation of the same functionality), as well as multiple semantic specifications
of the same service. For instance, the same exchange rate converter can be described
using two different ontologies for the financial sector.
Secondly, it automatically generates a set of wrappers which turn standalone Lisp or
Java code into a web service described by a PSM. Standalone code which is published
on the IRS appears as a standard java web service. That is, a web service endpoint is
automatically generated.

Web services can be published using either the IRS Java API or the Publisher form
based interface. Figure 6 shows an IRS–II user publishing a web service which
implements the MM_Bank_exchange_rate_provider. As it can be seen from the
figure, publishing a standard web service through the IRS is very easy. All the web
service developer has to do to is:
1. Specify the location of the IRS server via a host and port number.
2. Indicate the PSM implemented by the service by providing its name and ontology.

The menu of available PSMs is generated automatically once the location of the
IRS server has been specified.

3. Specify the endpoint for the web service. If the ‘service’ in question is a piece of
java code, specified as <java class, java method>, then the appropriate wrapper and
an end-point are automatically generated by the IRS publisher.

IRS–II: A Framework and Infrastructure for Semantic Web Services 313

Once the ‘Publish Web Service’ button has been pressed, a SOAP message
encoding the information in the form is sent to the IRS server where an association
between the PSM and the web service endpoint is stored in the registry of
implementers. A Java API, which replicates the functionality of the form, also exists.

Fig. 6. The IRS–II form based interface for publishing a web service

As we mentioned earlier the IRS Publisher also allows standalone Java and Lisp
code to be turned into a web service and associated with a PSM through a simple API.
For Lisp a macro irs-method-registration is used - an example for the
MM_Bank_exchange_rate_provider PSM is given in figure 7. When the form in
figure 7 is executed, a set of wrappers are generated which make the function mm-
exchange-rate available as a web service. Executing a second IRS form
(publish-all-services) sends the description and location of all the newly
created web services to the IRS server. The IRS Server automatically generates an
endpoint, which enables the Lisp function to be accessed as a standard web service.

(irs-method-registration
 MM_Bank_exchange_rate_provider_ontology ;; the ontology
 MM_Bank_exchange_rate_provider ;; the PSM
 mm-exchange-rate) ;; the Lisp function

Fig. 7. Registering the lisp function mm-exchange-rate as an implementation of the
MM_Bank_exchange_rate_provider PSM.

A similar API is provided for Java. Figure 8 below shows how a Java method
implementing the MM_Bank_exchange_rate_provider PSM could be published
through the IRS publisher.

314 E. Motta et al.

IRSPublisher irsPublisher =
 new IRSPublisher
 ("http://137.108.24.248:3000/soap"); //IRS server URL

irsPublisher.PublishPSM(
 "MM_Bank_exchange_rate_provider”, //PSM Name
 "MM_Bank_exchange_rate_provider_ontology", //PSM Ontology
 "MM_Bank", //Class name
 "exchangeRate”); //method name

Fig. 8. The exchangeRate method of the Java class MM_bank published as an implementation
of the MM_Bank_exchange_rate_provider PSM through the IRS Publisher.

3.5 IRS Client

A key feature of IRS–II is that web service invocation is capability driven. The IRS
Client supports this by providing an interface and a set of APIs which are task centric.
An IRS–II user simply asks for a task to be achieved and the IRS–II broker locates an
appropriate PSM and then invokes the corresponding web service - see section 4 for
an example. The same functionality can also be invoked programmatically, through
appropriate APIs associated with the current client platforms, currently Lisp and Java.

4 The Patient Shipping Healthcare Scenario

To illustrate how the IRS can be used to develop applications in terms of a number of
co-operating, distributed semantic web services, we will describe a scenario taken
from the health-care domain. This scenario covers a UK health care policy which was
introduced in 2002. The policy was to reduce waiting lists for the treatment of some
non-urgent medical problems by giving patients who were expected to wait more than
6 months for an operation the option to be treated in mainland Europe. Figure 9
graphically illustrates how we have implemented the scenario, which we dub “patient
shipping”, within the IRS–II. To limit the scope of the application we focused on the
medical condition of arthritis which can sometimes require surgery.

As can be seen in figure 9 five main types of web services are supported. Starting
from the top left of the figure and proceeding clockwise these are:
• A diagnostic and recommender service able to diagnose a condition, for example a

type of arthritis, from a set of symptoms, and to recommend a therapy such as a
particular kind of surgery.

• A yellow pages service able to indicate which hospitals around Europe perform
specific medical services.

• Services associated with individual hospitals able to answer queries about the
availability and cost of the specific medical treatments they offer.

• Ambulance services able to provide prices for shipping patients from one hospital
to another across international boundaries.

• An exchange rate service for converting prices into local currencies.

IRS–II: A Framework and Infrastructure for Semantic Web Services 315

Fig. 9. A graphical overview of the patient shipping scenario

Task and PSM descriptions were created for the above services within the IRS
server, using our knowledge modelling tool, WebOnto [4]. The services were then
implemented in a mixture of Java Web Services (exchange rate, ambulance services
and a number of the hospitals) and Lisp (all the remaining), and published using the
IRS Publisher. Finally, a patient shipping web service which integrates the above
services was implemented and published.

The patient shipping task has five input roles. The first four are the symptoms
which the patient displays and the fifth is the location of the patient.

Figure 10 shows a visualization of the distributed application during the execution.
The visualization is composed of two columns showing the IRS server and eleven
published services. Each published web service is displayed in a panel containing a)
the name of the PSM, b) an iconic representation of the status of the web service, and
c) a log of the messages the web service sends and receives. The meanings of the
icons are:

 - the web service is currently idle.

 - the web service is currently processing.

 - the web service is sending a message.

We can see in figure 10 that a number of services have been called with the
following results:
• The patient has been diagnosed with severe osteoarthritis by the Arthritis-

Diagnosis-Service.
• The Arthritis-Therapy-Service recommends that the patient is treated by

means of Arthroplasty, a synonym for hip-replacement.

316 E. Motta et al.

Fig. 10. A visualization of the patient shipping web service in mid execution

• The Medical_Service_Locator service has found three hospitals which offer
hip-replacement as a medical service, specifically Another-Hippy-Hospital,
The-Hippy-Hospital, and the Hip-Hip-Hospital.

• The Hip-Hip-Hospital can treat the patient first (on the 20th of June, 2003).
• The Air_Ambulance_Service can move the patient from Milton Keynes to

Paris, the location of the Hip-Hip-Hospital, for 3000 Euros.

We can also see from figure 10 that three web services are currently running: the
Shipping-Patient-Service; the Generic_Currency_Converter and the
Exchange-Rate-Provider. The IRS server has just sent a message to the
Exchange-Rate-Provider requesting an exchange rate between the Euro source
currency and the Pound target currency. Three more steps will occur before the
application terminates. First, the Exchange-Rate-Provider will send an exchange
rate to the Generic_Currency_Converter. Second, the
Generic_Currency_Converter will convert the 3000 Euros to 1920 pounds.
Finally, the Shipping-Patient-Service will send the result back to the client
interface (shown in figure 10).

This application illustrates some of the advantages of semantic web services in
general and our approach in particular. Service discovery is carried out using semantic
descriptions. For instance, once a need for hip replacement has been ascertained, the
appropriate hospitals are identified, which can provide hip replacement, using a
directory of hospitals and interrogating each hospital agent in turn. Thanks to the
availability of semantic descriptions, it is not necessary to invoke hospital web
services directly. Instead, a semantic query for hospitals providing hip replacement
services is sent to the IRS and the IRS broker is then able to match this query against

IRS–II: A Framework and Infrastructure for Semantic Web Services 317

the semantic descriptions of the various hospital service providers. The other
important aspect is the use of capability-driven service invocation. For instance, once
a hospital has been identified, which can treat the patient in Paris, the application
client simply sends an “achieve-task” message to the IRS server, asking the latter to
find the cheapest provider of ambulance services between Milton Keynes and Paris.

5 Related Work

The framework used by the IRS–II has much in common with the Web Service
Modelling Framework (WSMF) [5], as both the IRS–II and WSMF build on research
in knowledge modelling and in particular on the UPML framework. As a result both
approaches emphasize the importance of separating goal and service descriptions to
ensure flexibility and scalability. The main difference between IRS–II and WSMF is
that while the latter is exclusively a framework, the IRS–II is also an implemented
infrastructure, providing publishing support, client APIs, brokering and registry
mechanisms.

The IRS–II also differs from the DAML-S work in a number of ways, as already
discussed in section 2. In particular, DAML-S does not include flexible tasks-to-
methods mappings and relies instead on hierarchies of services, thus limiting the
possibilities for flexible, n:m mediation between problems and services. Indeed no
service-independent notion of problem type is present in DAML-S. Another
difference is that IRS–II represents descriptions in OCML, while DAML-S uses
DAML+OIL. This is likely to be a temporary difference, given that both approaches
plan to move to OWL-based representations in the near future.

Regarding W3C Web Services standards, there are differences in the approach we
take towards application development and in the roles of architecture components.
For example, unlike UDDI registries, when a service description is published to IRS,
the code for service invocation is automatically generated and later used during task
achievement.

6 Conclusions

In this paper we have described IRS–II, a framework and an infrastructure which
supports the publication, discovery, composition and use of semantic web services.
IRS–II provides one-click publishing support for different software platforms, to
facilitate publishing and semantic annotation of web services. Like WSMF, IRS–II
capitalizes on knowledge modelling research and is based on a flexible framework
separating service from problem specifications.

Future work on IRS–II will improve error handling, which at the moment is very
basic. We also want to facilitate automatic mediation, in order to exploit the
separation of tasks and methods more fully. Another important goal is to move away
from a built-in matchmaking facility and generalize this to a matchmaking
infrastructure, essentially providing hooks for different matchmaking approaches to
be integrated. Finally, we plan to OWL-ify the infrastructure, to ensure its compliance
with emerging semantic web standards.

318 E. Motta et al.

Acknowledgements. This work has been partially supported by the Advanced
Knowledge Technologies (AKT) Interdisciplinary Research Collaboration (IRC),
which is sponsored by the UK Engineering and Physical Sciences Research Council
under grant number GR/N15764/01. The AKT IRC comprises the Universities of
Aberdeen, Edinburgh, Sheffield, Southampton and the Open University.

References

1. Benjamins, V. R., Plaza, E., Motta, E., Fensel, D., Studer, R., Wielinga, B., Schreiber, G.,
Zdrahal, Z., and Decker, S. An intelligent brokering service for knowledge-component
reuse on the World-Wide Web. In Gaines, B. and Musen, M. (Editors), 11th Workshop on
Knowledge Acquisition, Modeling and Management, Banff, Canada, 1998.
http://ksi.cpsc.ucalgary.ca/KAW/KAW98/benjamins3/

2. Clancey W. J. (1985). Heuristic Classification. Artificial Intelligence, 27, pp. 289 –350.
3. DAML-S 0.7 Draft Release (2002). DAML Services Coalition.. Available online at

http://www.daml.org/services/daml-s/0.7/.
4. Domingue, J. (1998) Tadzebao and WebOnto: Discussing, Browsing, and Editing

Ontologies on the Web. 11th Knowledge Acquisition for Knowledge-Based Systems
Workshop, April 18th–23rd. Banff, Canada.

5. Fensel, D., Bussler, C. (2002). The Web Service Modeling Framework WSMF. Available
at http://informatik.uibk.ac.at/users/c70385/wese/wsmf.bis2002.pdf

6. Fensel, D. and Motta, E. (2001). Structured Development of Problem Solving Methods.
IEEE Transactions on Knowledge and Data Engineering, 13(6), pp. 913–932.

7. Gruber, T. R. (1993). A Translation Approach to Portable Ontology Specifications.
Knowledge Acquisition, 5(2).

8. IDC (2003) IDC direction 2003 Conference, Boston, March 2003
9. Marcus, S. and McDermott, J. (1989). SALT: A Knowledge Acquisition Language for

Propose and Revise Systems. Journal of Artificial Intelligence, 39(1), pp. 1–37.
10. Motta E. (1999). Reusable Components for Knowledge Modelling. IOS Press, Amsterdam,

The Netherlands.
11. Newell A. (1982). The knowledge level. Artificial Intelligence, 18(1), pp. 87–127.
12. Semantic Web. W3C Activity. Available online at http://www.w3.org/2001/sw/
13. Simple Object Access Protocol (SOAP) (2000). W3C Note 08. Available online at

http://www.w3.org/TR/SOAP/.
14. McIlraith, S., Son, T. C., and Zeng, H. Semantic Web Services. IEEE Intelligent Systems,

Mar/Apr. 2001, pp.46–53.
15. Sycara, K., Lu, J., Klusch, M. and Widoff, S. Matchmaking among Heterogeneous Agents

on the Internet. Proceedings of the 1999 AAAI Spring Symposium on Intelligent Agents in
Cyberspace, Stanford University, USA, 22–24 March 1999.

16. UDDI Specification. Available online at http://www.uddi.org/specification.html
17. Web Services Description Language (WSDL) (2001). W3C Note 15. Available online at

http://www.w3.org/TR/wsdl

	Introduction
	The IRS–II Approach
	IRS–II Architecture
	IRS Server
	Task Descriptions
	Problem Solving Methods
	IRS Publisher
	IRS Client

	The Patient Shipping Healthcare Scenario
	Related Work
	Conclusions

