Skip to main content

Prediction of Sinter Burn-Through Point Based on Support Vector Machines

  • Chapter
Book cover Intelligent Control and Automation

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 344))

Abstract

In order to overcome the long time delays and dynamic complexity in industrial sintering process, a modeling method of prediction of burn-through point (BTP) was proposed based on support vector machines (SVMs). The results indicate SVMs outperform the three-layer Backpropagation (BP) neural network in predicting burn-through point with better generalization performance, and are satisfactory. The model can be used as plant model for the burn-through point control of on-strand sinter machines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hu, J. Q., Rose, E.: Simulation of an Iiron Ore Sintering Plant. Research Report No.488. Department of Automatic Control and Systems Engineering, University of Sheffield, England (1993)

    Google Scholar 

  2. Young, R. W.: Dynamic Model of Sintering Process. Ironmaking and Steelmaking, 5 (1979) 25–31

    Google Scholar 

  3. Rose, E., Anderson, W. R. M., Orak, M.: Simulation of Sintering, IFAC World Congr., 10, (1993) 289–194

    Google Scholar 

  4. Augustin, M., Arbeithuber, C., JORGL, H. P.: Modeling and Simulation of an Iron Ore Sinter Strand. Proc. EUROSIM Congress’ 95, Sept. 11–15, Vienna, Austria (1995)

    Google Scholar 

  5. Vapnik, V. N.: The Nature of Statistical Leaning Theory. Springer-Verlag, New York (1995)

    Google Scholar 

  6. Vapnik, V. N.: Statistical Learning Theory. John Wiley & Sons, New York (1998)

    MATH  Google Scholar 

  7. Schölkopf, B.: Learning with Kernels. Ph. D. Thesis. Universität Tübingen, (1997)

    Google Scholar 

  8. Smola, A. J., Schölkopf, B.: A Tutorial on Support Vector Regression. NeuroCOLT2 Technical Report Series. UK: University of London, London (1998)

    Google Scholar 

  9. Müller, K. R., Smola, A. J., Rätsh, G.: Using Support Vector Machines for Time Series Prediction. Advances in Kernel Methods. Cambridge, MIT Press, MA (1998) 185–208

    Google Scholar 

  10. Platt, J. C.: Fast Training of SVMs Using Sequential Minimal Optimization. Schölkopf, B., Burges, C. J. C, Smola, A. J. Advances in Kernel Methods-Support Vector Learning. Cambridge, MIT Press, MA (1998) 185–208

    Google Scholar 

  11. Foresee, F. D., Hagan, M. T.: Gauss-Newton Approximation to Bayesian Regularization. Proceedings of the International Joint Conference on Neural Networks, Canada (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wu, X., Fei, M., Wang, H., Zheng, S. (2006). Prediction of Sinter Burn-Through Point Based on Support Vector Machines. In: Huang, DS., Li, K., Irwin, G.W. (eds) Intelligent Control and Automation. Lecture Notes in Control and Information Sciences, vol 344. Springer, Berlin, Heidelberg . https://doi.org/10.1007/978-3-540-37256-1_88

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-37256-1_88

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37255-4

  • Online ISBN: 978-3-540-37256-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics