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11. Socio-Economic Modeling
Peter A. Markowich and Giuseppe Toscani1

A comparative empirical and statistical analysis of social and economic phenom-
ena describing the collective behavior of human beings in different countries
and markets leads to a strikingly large number of similarities. This motivates
the basic idea that the collective behavior of a society composed of sufficiently
many individuals (agents) can be modeled using the approach of statistical me-
chanics, which was originally developed for the description of physical systems
consisting of many interacting particles. The details of the interactions between
agents then characterize the emerging statistical phenomena.

In particular the evolution of wealth in a simple market economy has been
studied extensively. A very interesting point of view in the representation of
markets is the kinetic one, which leads to Boltzmann type equations for the
evolution of the distribution of wealth [3–6, 12]. In these models, the market is
represented by a gas of physical particles, where each particle is identified with
an agent, and each trading event between two agents is considered to be a binary
particle collision event, with collisional rules determined by the properties of
the underlying market. The knowledge of the large-wealth behavior of the steady
state density is of primary importance, since it characterizes the number of rich
individuals in the society and can easily be used to determine a posteriori if the
model fits known data of real economies.

More than a hundred years ago, the Italian economist Vilfredo Pareto [11]
first quantified the large-wealth behavior of the income distribution in a society
and concluded that it obeys a power-law. More precisely if f = f (w) is the
probability density function of agents with wealth w, and w is sufficiently large,
then the fraction of individuals in the society with wealth larger than w is:

F(w) =

∞∫
w

f (w∗) dw∗ ∼ w−μ .

Pareto mistakenly believed the distribution function on the whole range of
wealth (positive real axis) to be a power law with a universal exponent μ approx-
imatively equal to 1.5.

Various statistical investigations with real data during the last ten years
revealed that the tails of the income distributions indeed follow the above men-
tioned power law behavior. The numerical value of the so called Pareto index μ
generally varies between 1 and 2.5 depending on the considered market (USA

1 http://www-dimat.unipv.it/toscani/
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∼ 1.6, Japan ∼ 1.8–2.2, [6]). It is also known from statistical studies that typi-
cally less than 20% of the population of any country own about 80% of the total
wealth of that country. The top income group obeys the above Pareto law while
the remaining low income population, in fact the majority (80% or more), follow
a different distribution, which is typically Gibbs [6] or log-normal.

Kinetic models of the time evolution of wealth distributions can be described
in terms of a Boltzmann-like equation which reads

∂f
∂t

= Q( f , f ) , (11.1)

where f = f (v, t) is the probability density of agents of wealth v ∈ R+ at time
t ≥ 0, and Q is a bilinear operator which describes the change of f due to binary
trading events among agents. We shall refer to this equation in the sequel as
kinetic Pareto–Boltzmann equation.

The involved binary tradings are described by the rules

v∗ = p1v + q1w ; w∗ = p2v + q2w , (11.2)

where (v, w) denote the (positive) moneys of two arbitrary individuals before the
trading and (v∗, w∗) the moneys after the trading. The transaction coefficients
pi, qi, i = 1, 2 are either given constants or random variables, with the obvious
constraint of non-negativity. Also, they have to be such that the transformation
from the money states before trading and after trading is non-singular. Among
all possible kinetic models of type (11.1), (11.2) the conservative models are
characterized by the property

〈p1 + p2〉 = 1 , 〈q1 + q2〉 = 1 ,

where 〈·〉 denotes the probabilistic expectation. This guarantees conservation of
the total expected wealth of the market (which is the first order moment of the
distribution function, multiplied by the total number of individuals).

In weak form the collision operator Q( f , f ) is defined by∫
+

Q( f , f )(v)φ(v) dv

=
1
2

〈∫
+

∫
+

(
φ(v∗) + φ(w∗) − φ(v) − φ(w)

)
f (v)f (w)dv dw

〉
. (11.3)

Here φ is a smooth test function with compact support in the non-negative reals.
Note that the collision operator is assumed to be of so-called Maxwellian type,

i.e. the scattering kernel does not depend on the relative wealth of collisions and
can therefore be accounted for in the computation of the statistical expectation
by choosing the probability space appropriately.
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In their pioneering paper A. Chakraborty and B.K. Chakrabarthi [3] started
out by stating that the agents taking part in trading exchange their money
according to the rule

v∗ = v + Δ(v, w) ; w∗ = w − Δ(v, w) . (11.4)

Here Δ(v, w) represents the amount of money to be exchanged, which has to be
such that the agents always keep some money in their hands after trading. The
ratio of saving to all of the money held is usually denoted by s and called the
saving rate. Taking 0 < s < 1 constant, the amount of money to be exchanged
can be modeled as

Δ(v, w) = (1 − s) [(ε − 1)v + εw] , (11.5)

where 0 ≤ ε ≤ 1 is a random fraction. This model was further developed in
B.K. Chakrabarthi’s research group by assuming that agents feature a random
saving rate [4]. Clearly, choosing a random value for s does not change the type
of collision events.

A somewhat different trading law was considered by S. Cordier, L. Pareschi
and G. Toscani in [5]. Their trading model reads

v∗ = sv + (1 − s)w + ηv ; w∗ = (1 − s)v + sw + η̃w , (11.6)

where 0 < s < 1
2 . Here η and η̃ are independent equally distributed random

variables with variance σ2 and mean zero. Provided both η and η̃ take values
in the interval [−s, s], the trade (11.6) is such that the random coefficients
pi, qi, i = 1, 2 are nonnegative. Note that this trade is conservative only in the
mean, since p1 + p2 = 1 + η �= 1, whereas 〈p1 + p2〉 = 1. The last terms in
the trading laws describe the spontaneous growth or decrease of wealth due to
random investments in the stock market and other macro-economic factors.
This mechanism corresponds to the effects of an open market economy where
typically the rich get richer and the poor get poorer.

Non-conservative models have been recently considered by F. Slanina [12],
who introduced a model with increasing total wealth based on the collision
coefficients:

p1 = s , q1 = 1 − s + ε ; p2 = 1 − s + ε , q2 = s . (11.7)

In (11.7) ε is a fixed positive constant, so that the total money put into the trade
increases, since

v∗ + w∗ = (1 + ε)(v + w) .

This type of trade intends to introduce the feature of a strong economy, which
is such that the total mean wealth is increasing in time. We remark that the
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Fig. 11.1. Angra dos Reis, Brazil: on the w = o(1)-part of the Pareto distribution

�

Fig. 11.2. Salvador de Bahia, Brazil: on the w = o(1)-part of the Pareto distribution

same effect can also be obtained by simply allowing the random variables in the
trading laws (11.6) to assume values on the whole real axis, and at the same time
discarding those trades for which one of the post-trade wealths is non-positive.

A critical analysis of the discussed collision=trading rules reveals a deep
analogy between the economic models described above and the granular ma-
terial flows modeling framework of Chapter 3. They share the property that
the steady (or, more generally, the self-similar asymptotic) states are different
from the classical Maxwell distribution of the Boltzmann equation of gas dy-
namics presented in Chap. 1. Another analogy becomes evident when looking
at the non-conservative properties of the economic and granular Boltzmann
equations, resulting from inelastic binary collision models.

Conservative exchangedynamicsbetween individuals redistribute thewealth
among people. Without conservation, the best way to extract information on the
large-time behavior of the solution relies on scaling the solution itself to keep
the average wealth constant after scaling. Nevertheless, the explicit form of the
limit distribution of the kinetic equation remains extremely difficult to recover,
and often requires the use of suitable numerical methods.

A complementary method to extract information on the steady state distri-
bution was linked in [5] to the possibility of obtaining particular asymptotics,
which mimic the characteristics of the solution of the original problem for large
times. The main result in this direction was to show that the kinetic model
converges (under appropriate assumptions) in a suitable scaling limit to a par-
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Fig. 11.3. Hongkong: in the thin w = O(1)-part of the Pareto distribution

�

tial differential equation of Fokker–Planck type for the distribution of money
among individuals. This diffusion-convection equation reads:

∂f
∂t

=
λ
2

∂2

∂v2

(
v2f

)
+

∂
∂v

(
(v − m)f

)
. (11.8)

In (11.8) m is the mean wealth,

m =
∫
+

vf (v, t) dv ,

which is time-conserved assuming that f has been scaled to be a probability
density. The same Fokker–Planck equation was obtained in [2] as the mean field
limit of a stochastic equation, as well as in [9, 14] in the context of generalized
Lotka–Volterra dynamics.

The equilibrium state of the Fokker–Planck equation can be computed ex-
plicitly and is of Pareto type, namely it is characterized by a power-law tail for
the richest individuals. By assuming for simplicity m = 1 we find:

f∞(v) =
(μ − 1)μ

Γ(μ)

exp
(
−μ−1

v

)
v1+μ (11.9)

where

μ = 1 +
2
λ

> 1 .

We remark that the tails of the Pareto steady state of the Fokker–Planck
equation are related to the coefficients s and σ2 which appear in the collision
rule (11.6), with σ2/s = λ!

Another important field in which microscopic kinetic models describing
the collective behavior and self-organization in a society [16] can be fruitfully
employed is the modeling of opinion formation (cfr. [1,13,15] and the references
therein).

In these studies, formation of opinion is described by mean field model equa-
tions. They are in general systems of ordinary differential equations or partial
differential equations of diffusive type. In [1], attention is focused on two aspects
of opinion formation, which in principle could be responsible for the formation
of coherent structures. The first one is the remarkably simple compromise pro-
cess, in which pairs of agents reach a fair compromise after exchanging opinions.
The second one is a diffusion process, which allows individual agents to change
their opinions in a random diffusive fashion. While the compromise process has
its basis in the human tendency to settle conflicts, diffusion accounts for the pos-
sibility thatpeoplemaychangeopinion throughaccess to information.Atpresent
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Fig. 11.4. Manhattan, New York: in the fat Pareto tail
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Fig. 11.5. Hongkong, China:
where the fat Pareto tail is made
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Fig. 11.6. Shanghai, China: some are left behind on the
w = o(1)-part of the Pareto distribution (courtesy of
Andrea Baczynski)
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this aspect is gaining importance due to emerging new ways of global access to
and exchange of information (among them electronic mail and web navigation).

This line of thought is at the basis of kinetic models of opinion formation
[15], based on two-body interactions involving both compromise and diffusion
properties in exchanges between individuals.

The goal of kinetic models of opinion formation is to describe the evolution
of the distribution of opinions in a society by means of microscopic interactions
between agents which exchange information. To fix ideas, we associate opinion
with a variable which varies continuously from −1 to 1, where −1 and 1 denote
the two (extreme) opposite opinions. We assume binary interactions which are
such that the bounds of the admissible opinion-interval are maintained. This
crucial rule emphasizes the difference between social interactions, where not all
interaction outcomes are permitted, and collisions of molecules in the kinetic
theory of rarefied gases.

Let I = [−1, +1] denote the interval of admissible opinions. From a micro-
scopic view point, a binary interaction is described by

v∗ = v − sP(|v|)(v − w) + ηD(|v|) ; (11.10)
w∗ = w − sP(|w|)(w − v) + η̃D(|w|) ,

where the pair (v, w), denotes the opinions of two arbitrary individuals before the
interaction and (v∗, w∗) their opinions after exchanging information between
them and with the exterior world. Opinions are not allowed to cross bound-
aries, and thus the interaction takes place only if both v∗, w∗ ∈ I. In (11.10) the
coefficient s ∈ (0, 1/2) is a given constant (the analogue of the saving rate in
(11.5), while η and η̃ are equally distributed random variables with variance σ2

and zero mean. The constant s and the variance σ2 measure the compromise
propensity and, respectively, the modification of opinion due to diffusion. Fi-
nally, the functions P(·) and D(·) describe the local relevance of the compromise
and diffusion for a given opinion.

In analogy to kinetic modeling of market economies, the binary interactions
(11.10) are used to construct a Boltzmann-like equation similar to (11.1), where
now ∫

Q( f , f )(v)φ(v) dv =

1
2

〈∫ ∫
(φ(v∗) + φ(w∗) − φ(v) − φ(w))f (v)f (w)dv dw

〉
. (11.11)

A suitable asymptotic analysis allows to obtain a Fokker–Planck equation with
variable coefficients from this Boltzmann equation [15]:

∂f
∂t

=
λ
2

∂2

∂v2

(
D(|v|)2f

)
+

∂
∂v

(
P(|v|)(v − m(t))f

)
. (11.12)
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In (11.12) m(t) is the mean opinion at time t,

m(t) =

+1∫
−1

vf (v, t) dv .

The long-time behavior of the Fokker–Planck equation is very rich, and de-
pends on the interaction dynamics of the Boltzmann equation. As for economic
interactions, the constant λ in the Fokker–Planck equation (11.12) is related to
the coefficients s and σ2 which appear in the collision rule (11.10), with σ2/s = λ.
The structure of the steady state represents the formation of opinion contingent
to the choice of the interaction dynamics. To show results in some simple case,
we fix P(|v|) = 1, which implies conservation of the average opinion, again as-
suming that f has been scaled to be a probability density and that f and D vanish
at the extreme opinions v = +1, −1. If in addition

D(|v|) = 1 − v2 ,

then the steady state distribution of opinion solves the equation

λ
2

∂
∂v

(
(1 − v2)2f

)
+ (v − m)f = 0 (11.13)

where m is a given constant (the average initial opinion). The solution of (11.13)
is easily found:

f∞(w) = cm, λ(1 + v)−2+m / (2 λ)(1 − v)−2−m / (2 λ) exp
{

−
1 − mv

λ(1 − v2)

}
. (11.14)

Here the constant cm, λ has to be fixed such that the mass of f∞ is equal to the
mass of the initial state, which is 1 by assumption, implying −1 < m < +1. Note
that the presence of the exponential assures that f∞(±1) = 0. The solution is
regular, but not symmetric unless m = 0. Hence, the initial opinion distribution
impacts on the steady state through its mean (opinion) value. In any case, the
stationary distribution has two peaks (on the right and on the left of zero) with
intensities depending on λ.

Comments on the Images 11.1 to 11.6 The Italian political economist Vilfredo
Pareto (1848–1923)2 is the originator of the so called empirical Pareto law3 which
in a simplified form states that – in any given country – less than 20% of the
populationown80%of the totalwealth.Although thiswasnotconsideredamoral
issue by Pareto himself, it is very hard not to think of morality when traveling
through third world countries and being in direct contact with the huge number

2 http://cepa.newschool.edu/het/profiles/pareto.htm
3 http://www.it-cortex.com/Pareto−law.htm
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Fig. 11.7. Opinion forming in Shanghai, China (courtesy of Andrea Baczynski)

of people, who are not part of the large-income Pareto tail. Mathematically
speaking, a more general form of the Pareto law is represented by the fact that
the large w(ealth)-tails, which correspond to the density of the rich individuals,
of the large-time asymptotic states of the kinetic Pareto–Boltzmann equation
(at least after an appropriate scaling limit) decay only algebraically as the wealth
variable w tends to infinity, leading to so-called heavy or fat tails. The precise
decay rate depends on properties of the market under consideration. Statistical
data confirm the 80–20 wealth distribution rule as a surprisingly universal
outcome, consistent with the algebraic decay law.

Also we remark that Pareto’s work on efficiency and optimality of economic
systems4 hasdeep implicationsonmathematical gametheory5,whichwas turned
into a precise mathematical theory in the first half of the 20th century, mainly by
John von Neumann6 and John Nash7. We refer to the book [17] for an excellent
introduction to mathematical game theory, mainly in the context of biological
systems.

Comments on the Images 11.7–11.10 Mathematical opinion formation models
are based on quantifying the outcome of social interactions in the society under
4 http://en.wikipedia.org/wiki/Pareto−efficiency
5 http://en.wikipedia.org/wiki/Game−theory
6 http://en.wikipedia.org/wiki/John−von−Neumann
7 http://nobelprize.org/economics/laureates/1994/nash-autobio.html
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consideration. Clearly, they have to take into account the various factors making
up the social tissue of the society, which stem from the historical, religious,
socio-economic, political etc. background. A lot of research in this direction has
been carried out in the last years, and the interested reader can find information
on the subject in the webpage of the Condensed Matter ArXiv8.

8 http://xxx.lanl.gov/find/cond-mat
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Fig. 11.8. Opinion forming on the
Zocalo, Mexico City
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Fig. 11.9. Opinion forming in Isfahan, Iran



11 Socio-Economic Modeling

205

Fig. 11.10. Beach in Salvador de Bahia, Brazil: what is the mean free path?
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